UOP staff
KONTONI DIONYSIA-PINELOPI
ASSOCIATE PROFESSOR
/9j/4AAQSkZJRgABAQAAAQABAAD/4RKiRXhpZgAASUkqAAgAAAAEADEBAgAHAAAAPgAAADIBAgAUAAAARQAAADsBAgAHAAAAWQAAAGmHBAABAAAAYAAAAA4BAABQaWNhc2EAMjAxNjoxMDoxNyAxNjowMToyNQBQaWNhc2EABgAAkAcABAAAADAyMjADkAIAFAAAAK4AAAACoAQAAQAAAAkCAAADoAQAAQAAAG8CAAAFoAQAAQAAAOQAAAAgpAIAIQAAAMIAAAAAAAAAMjAxNTowODoyOSAxMTowOToxNABlY2NjY2U4MmE1MWZmNDNmMGEyMGE5N2E4NmNjMTc1ZQAAAwACAAcABAAAADAxMDABEAQAAQAAAEwCAAACEAQAAQAAACQDAAAAAAAABgADAQMAAQAAAAYAAAAaAQUAAQAAAFwBAAAbAQUAAQAAAGQBAAAoAQMAAQAAAAIAAAABAgQAAQAAAGwBAAACAgQAAQAAAC4RAAAAAAAASAAAAAEAAABIAAAAAQAAAP/Y/+AAEEpGSUYAAQEAAAEAAQAA/9sAQwAFAwQEBAMFBAQEBQUFBgcMCAcHBwcPCwsJDBEPEhIRDxERExYcFxMUGhURERghGBodHR8fHxMXIiQiHiQcHh8e/9sAQwEFBQUHBgcOCAgOHhQRFB4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4e/8AAEQgAoACIAwEiAAIRAQMRAf/EABwAAAAHAQEAAAAAAAAAAAAAAAACAwQFBgcBCP/EADcQAAIBAwMCBQIFAgYCAwAAAAECAwAEEQUSITFBBgcTUWEigRQyQnGRFaEjUnKSwfA1sUPR4f/EABoBAAIDAQEAAAAAAAAAAAAAAAECAAMEBQb/xAAiEQADAAICAgIDAQAAAAAAAAAAAQIDERIhBDETIgVBUTL/2gAMAwEAAhEDEQA/ANZY4PC0m2MdOaM2NxobeM1hOiIFiCOlEyScEUo6rv5z0osqgnHNQIQYJGQOelFYEN8Cj7VAGOTRXcgnpgdTUCdVsjBojON2N3SmWo6lbWVrNd3NxDBBEMySSOFAFUPxB5s+HrJpYtKtrjVplH0yY9KHd8k/Uw/YUylv0K6S9mkFgFzRd655YftWE3fnD4nnlIjstJhiOMqkLbv9xbinlr5m3B2G7t5oyf1JKCB/IpvirQnyz/TaiV60Rzk8GqD4f8d219IIxMHz/m+kirnZX8c3GNp9jSNaLE9jpSemaUOdwwOtFXnnijO44wKARNlI96Kq9+aUzkc8YoKSRioQIBz1oUpjB5xg0KhCU28UUM2MYzRpSSTjpik1zkf3qMUDHnkDNJyEnnIo0mASaSmZQOnNQIlKzLyTiqV458TxaXC0W5vVwDtHYe5p/wCMvE9toVm08xVyvCxlsFj7CsN8T6zda7fzXTDDzuNqKchR0AFWY45MS7UoZeJPEWoazclLi4kkiDZCBjsz74pnZ2ctw20d+K0bwh4GhCxTXBSTKgnHIrRYNFtVUKLW3UYxhYgOKseaY6SBHi1k7pmAHR5ozgRl2PQDrRV0XUJnwlvMCOOVr0RDpFpCp2W0IJ77BmiXGnQuu0xLj9qR+Sy5eCjzosF/pk3qMjrtOckVe9A8cSJAkc7BWwMknnpwKuOtaDazwuvpKG/aso8T6G1hK8gjO0HgiirV+yu8DxdybJ4a8WWl+0dtKyxTNgAO3Un5q1ry/OK83eH9ZljcFwv+EQV3d69C6Pcx3VhbXUbqyTQq4wc4JA4pLjiSLVIe4LMSMfxRlBUdcn2xXVbAOKBweetIOcJ746UK4fsKFQhLljnA6UXoBXcjByciky1QUJM3FMb+Qw27ycYUfzTuUbj1FNdU/CR2M8l3J6cSIWyBklh0AHck1AmC+aOp2+o6/NpwkLLaKFZlbhpDy38Zx9qjvA+mHUNUZQDtRMk+1QN/JLcatPcyEs80zM5+Sa0fy3s0it3mZlDMxOScAL/3Naf8xsphc8hoOgxKlrHkYwoAFTQKjGATUNp2oaWVCrqlgSOMC4Un/wB1N23oygbJEbd0IbIrI5Z05pHSVI6Uk5XOMU+Fqdp3OAo71E6nq2jaexS4uzu9lXJP7CopbC6lCN5EGHuapvizTPxFq6Ae5GKtDarBcxk29nq0ij9f4CQIPvjFRt7cQzbkDfUB+VlKkfY0UnLFeqWjCriN7S6l2ggqSDW1eVl4k3hmzibidA249mG44/gcVmniy3S31CYEYLc57HNTXlVqslvM1hJGf8F9wI64PWtWRbhM5kfXI5ZtMTbgKXwCvA4plbSK65B/anKHHQnFZjToUIA7dKFFye7cUKACRf8AICBSeM/tSrYbhT/NEbgAcUwAjgDLZFZn5z6/Ja6athZFjLM2HkzgRr3I+T0/mtHvHKQsfisp8ybdLq1nmMyo6LnGKM+wP0Y6146lgvCE4PzWyeXNvD/RdPurm3SVWh9QCRcjJJ5I71kdjZR3t/DbO/55ADj2rf8ASrSEaZBawgLHHGFUAcAVbmrSQvizum2RPiDxHZRaZDqU2gW8lpLcG0gcW8SySNjJ25Awo9+M040CziOm22t2qvp8dzareQI0mBKmTxgHAbg8VMw6PaNaGzlRpLViC8LncjY56GhqkMEMZS2jjRSmGYJg4H6QfalVzxNSiuRLT6kr6QJOfqXNQSWryyRvarD6zRtKSSNwCqTjnnJxgAd6dN/4dFA6IKNpccMhX113RjkHGcVXL0+y6peuiq+GvGmsaxbXc0dvtjso43lRptxYuT9I4H1DHK1NtINUtoZnT6sZBPUfGambyzs3G4QRYP8AlpqIFhB2LhfapbW+hMctLsyLzVs3tispztHWonwRqEVhriNcOwgnURsRg4J6E/erp5rxxS6HM7ZDL0PzWXW0npC2YgEMgJGKvjdYzDn+ubZ6Q0KcPGyZD7DhWByCO1TS5x071nHlxqstxbL6hLoBgtnn71oUbgqCMjp96oa0XJ7WxxjJ6cUKAOFHOaFKRkgyfT8/FN3IVfq7U7Y4XrTWeNWBznB9qOxCM1q89G3YlGICk59h71ifj3Wlu5HWFSuRtJz1q+eZA1Sx0y7v4WQJawljIW7ZA5HvkisOv7u5ncyTEO79yKshbFqtBdOdo9UtWUciUGvQfhZ91lGSQSRWFeFbSfUtXjtoImlk2lyq9SF54ravB8vq6fESjJImY3VxhgRxTZktDeJvbLhFEjJgDn2ph4hg2Qose3eTyPgCntrIRyx4FNr8maUEHGDwTzWdaR01savqGknwyl0syAH80u8FAOnb5pXw6scbsruk0EkYeGRGyDz7jtRbfRrZbUJsRY2/QoAX+KVsbaKzYLHtVQNoA4AHsB2pmDXRLXVj6UayAAA8giovUSqxntxUoJgsIXcSO2ai9TUOhNDoXv8AZmHmHFdXttJYWkZkmkBIGe2Mn+1ZPNIWk2hdpQBce2K2u9J/qeo3zRxPHaWrKokYDDMCAQO5HWsdS1BknByWBHI7k1qxdRo5fkrd7LZ5S36weJEsprmRIZlzwuRv7AntW62ScHuM8ViXlbpgk1WZeUlABeYnASPI+kDuSRW5W4DYKlcDoKov2W4+pHCqMcmhXcEsOmKFIMx7KecA0jK+E60pyxyeD+1IXKB4iucH39jTCFG8143vvCuoWsW8ymMOFH6trA4/t/asDnf1EjwhVsc5rcPGsd7ArSSPlCcZU/8AFZFrMaR3wAGAxz/ejiv7cQZcf05bGVk99YTW+p2dxNayo52SRthlNaZ5QaxPqFtP+KmknuElIkdzktnkE/8Ae1ZdJcs96oXmPJGPin3grXj4c8RrcyF2tZR6c4Ht2bHcjr/Na8kJz0ZcOXha/h6O3HgDv1qA1fV7+2uRBHaphv8A5C/9sVKWd4ksKOjJIjLlXVuGB6EVwRJPLiSNXHyM5rB6fZ3cdJ6ZDR6jqp2rHH6jSdAELfxgU2bUtZSYxwiBpOm2QHj+Kt9pYyRHNncXNsCMEQzMmR7cGufgIoclIwD39z96d0tGms0aa0I6Wl4lov4mdJZDySq7R9qc3bD8OcnBxQRgi4JxVc8ca5/TNIuJIQZLn02MSD3x1PwKSFyZjyUpRjXmTcpd+NbmOJtyQYiyB+rqf7mmMQbc4yd6kH9zikJNsUsa3ed8hMs0g/MxNEgv+qkY6gGukpUycOrdU2XDwhrg024X8VbyNHzkxEbi3br2ravDup2t/ZxyQSZ45VuHH7ivPOhSrPMVc4OORnANbL4EjEUInKek7RKuD+oZyD/+1iyLs243uS87s4wMUKREuU+aFVlmiRY7RnrxTW4lyhwM04Y/TzUdrF5FY2hnlEhO4KqxjLE0whRfMO+dgkKaZePwSZUUGMD5OeP2rLNRiFxM0gBJUcAVcvHF14nlsVvNWSSztZFLWkabWMq5/M/1ZX+Kza2nnnndmmMakEKPc+1PGP7bEu/roJaWzL691IpAA2pn3Pems0Qlmk9IZCrk0W7ui7m2ic+mpILe/wA0SKUxxskTEb/zfIrdJz6L75X67qNnY3Fs2bmyhkXCn80O7PT4JHStK0nXLd5V3NtDdCayTypkDa5e2rY2zW2furD/AO60WLTQJiv5QenzWTNCVHT8TJTgv9nq1sIyQyN9+lMtT1q2QMFdWbsFqvQ6bMB9IUill06UjDkAewqnSNTtiF5rcoGI4yzk4Vfmo/VtOmm0e5lu2D3NwoyxHCjOcCrDp+kIZRIyg46UrryiCCNBF6jykqqYzkAZJx8Cimk+hK212YH4mgU3Y2jkZXg9fY1ARqd+Md6k7u5Ml7I8UnqkkgMRtAGenNMLht0mQoU9wK2+5OTWuQ/sy1uy3AGcHg1qXl/rf4uOGHTC1xPFk3FmxCyEdS0eTz/0VkYmkjt9mepzikfWkEiyI7I6nKsjbWH7Ec1XWPkiyMvA9V2t1Fc2SXEL7kcdcEc9x8EUKxbwp5o6lZTlNegGowSbQ8yARyjnlyAMO2OpwCe5NCqHiaZess12ehsM5CxqWYngDv8AsKqXmD4i0HQEjj1PVLZLyOQSfgoj60+B7op+kf6iKzPzA82tWv7+ew8JXc2maSm6IXKKFuLsHgsWPKKecKuDjknPTL0CpkgDnr81dHjtrbKL8jXov3inxqmsOUt7NoYCuB6jgnHXoOBVJllAj9RGwwbGP+aS3kkKB16UlICrYPX2NNw4sR5HS7BG8sO4x8bxtJIzxXUBBpa5mWeMRRosSqxZc8/bNIn6Uz7Vojoz130XnywtZI2/H7kCyT+mQQcsoHY+2TWvQ2yyAEDmql4U0j8D4V0hgoINsszkc7i/JI98Zx9quekuomCZ3BgCprDme2dbxY4yOraAlcUtHaFmwBnNSsEEZXOOetOraJAcgc1Qaxlb2gjjxjkVDeIwLWA3xZR6CPjJHdTwKst7J6MJfY5HsqFifgAdazrzM1nQLbw/f2ms3kcuoyxEQadb4keIkHDSMPpUg9ic/FGE2xLekef41PorI+/A/UB3oXapGQYpxJkZYjt8Gk9zlApY4HbNExxXUUdI4brs5ncBnmuY5ya6OKB65puANhkJ96FFUdqFLoi7FTwOBRT9qBY8kjNFJycmrF6F9nT1pa5uRcSCSSNQ+0BigwDjvSJZQOtcBB5pXKbInoMzKxG1doHaisCSB710D4o8Y3TJGqkliAAOcmma0hp7pIsfhrxBrWhDbp18wiJyYJQJIif9J6fbFWjS/MW+tbgzS6JYzEnJWOZ4wD3wOcVRIwduMEEHFKxk8nsK5t6PRY4TRrsPnIixhT4QG7PJ/qRxj/ZRJfOTUTGRZ+GdNhfs011JJj7ALWWI4IDLgj96MLgbygC5pUXfDH7ZY/EPjHxPr1yJ7zVHt8IUWOyzCiqeowDk59zzVS1JRFasFAGf5NOJJ5BEzDAx8VH6vJmYxLKsqA/S6ggMPfB5qzHp2kiryqjFiehiOvXFD4rvaucEc5rpHmmcwKFD6fZq6CpyfqoA2cJx7ZoUN6rn6M/ehSNJDJg2kjrQI6YruDmu9hVmhdhMc4rqgCu4zXKGiHQcUAMuD7HOfahRouWz9qOt9B9dkhEAbfIJHFO7oSpcyrPEkDnBKKAFHA/4ppaMvpKhVcpnLZOWB96exmWF45EdFbaGRlYNgEY/9dq5lpqmmel8aleNM5I5lcykIC5ydihR9gOldDuqGPefT3b9nbdjGf4rkUirIp9KKUKCNrg7TkYzx3HWi7huYOpKsuFYNja3Yn496Q0t6RwhmUMNpUtjBbn+Kibli87Mf2FSF4wiRxuUsMjcnRvkVF5PvzWrx529nI/JZelADXARxQJGcUK2HHOkj/LXMdqFdx3ok0FC5bBFCjNweaFI0FH/2f/hAtdodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDUuMS4yIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyIgeG1sbnM6ZGM9Imh0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIiB4bXA6TW9kaWZ5RGF0ZT0iMjAxNi0xMC0xN1QxNjowMToyNSswMzowMCIgZXhpZjpEYXRlVGltZU9yaWdpbmFsPSIyMDE1LTA4LTI5VDExOjA5OjE0KzAzOjAwIj4gPGRjOmNyZWF0b3I+IDxyZGY6U2VxPiA8cmRmOmxpPlBpY2FzYTwvcmRmOmxpPiA8L3JkZjpTZXE+IDwvZGM6Y3JlYXRvcj4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgPD94cGFja2V0IGVuZD0idyI/Pv/tAHZQaG90b3Nob3AgMy4wADhCSU0EBAAAAAAAPhwBAAACAAQcAVoAAxslRxwCAAACAAQcAjcACDIwMTUwODI5HAI8AAsxMTA5MTQrMDMwMBwCUAAGUGljYXNhOEJJTQQlAAAAAAAQ+eblh7+95FVFnZ9/Gc1Sov/bAEMACAYGBwYFCAcHBwkJCAoMFA0MCwsMGRITDxQdGh8eHRocHCAkLicgIiwjHBwoNyksMDE0NDQfJzk9ODI8LjM0Mv/bAEMBCQkJDAsMGA0NGDIhHCEyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMv/AABEIAm8CCQMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAABAgADBAUGB//EAD8QAAICAQMDAgQEBAQFAwQDAAABAhEDBCExBRJBUWEGEyJxFDKBkaGxwdEHI0LwFTNS4fEWJGIlNUOSVHKi/8QAGQEBAQEBAQEAAAAAAAAAAAAAAAECAwQF/8QAIBEBAQEBAAMBAQEAAwAAAAAAAAERAhIhMQNBEwRRYf/aAAwDAQACEQMRAD8A91L7gSrdjNbAe3ocHqDlWRraw3aBYCuNi9vuM27JuAEqF8+B3tyIQFcAryBuhVLb9QLAP1Apg7v5gFgfqRvbYF7gRvcjj9gpEteQFS+xO3zsS6dBACQCx8bCSVBQ7mC9yMN0BLG7t+AW6I3uA6d8Ae7B7hCJtYWk+Ba8g3CixXvwBpkV7gFtr9ifVsB3f6BWyQBfAFsFAfIAt3wQNpIClbAm5PBLZEECiNMf3F/sAvpZEgvwFbBUFY12I3uBN64QO+l7h5QrAZS9gt2hFwF/cBk9gp3+4q4DHkBq22F4Y10xG1ZQyqtwSaZE90B8BAv0sDkyduwaqiKDfALCRpgLa9WFKwUxt/DAKIyJP1A/uAOAqqI0/UOwE2r3Jt6ka9ABHQcnYGxm1tQJtUELdIXcf80dwJKiqC+4bI1uB8EEbsAUDfcBa9QVa4Q3C3Fb8AL2tS8BlfoSq3GtsCu6/cG7lZY7FtpgNTSEbblXgZyFv6uSg1RLpjN7ciO06sirE/YDVrcCG5RBU2yW2NTvgPjjyUJZN2Gt6DTQEjwxlu7EsisYHbFdBtUVTlQD7UBNFSlsNaXgCznfxRORL9gqXsEPdCvfyBNPYABq/I6hFK/JVbSFeR21QFrkuCIpUvLCp7bAWX4CJCS8rcLdvgoa72BasG1rYFbsim5FluiXuRABVVh5RGBJgCg8eLZLF8rkodeiGQpL3AbncV/YeKoD4AC4quQu64DH3I2q3sBfHAsm64LFTWwGuFZAlvbYDbsba+WClYEVE9hqT3IltQA4XkC/Lv6jNIVgSyeAV/MNe/kAhqIt+AgbpR3FldD+BJPfYIlbbg4Gd9oHb4AjZHuBq+Q9tADev1IwvZAW6AXxuV1bLu0FIBHFoK3GIk/BArEfJbLj3FKKndkTt0WP7AUfIA8OhWndlqWz2BT9ApV/AeheAtutgC0TZFfe/JHIIZ/msLYiYHKiiVbGulQnfQjm2wLGxHuL3NsLTUb7XXkAUtwU2rLseJzv6G69C/M9LpccpZ8uOPat1J15oCrDhcuUWS0s2k4Rbv0R43qPx/DTarJp9HHBKl+be7/kcbVf4hdYcHHBl08e5JO4O1w/6DE2Pp2LpuoytvslSVtvb+Zl1kfwk3FtOS5Vo+QZvi74hzzfd1FpOPa1FOqG03xX1fC/r1EcqqvqRcNj6ZPqMb4J+Nj222tkeMwfFGLKoLP8qMmnbXd7m2HVNPlpfNjum7LhseieujO2l4Dj10ElZyNPkxZIvtmpVG9hnkxut1urJhruw1kMi2/iPDMuLR59ZK3i9mWY9TKM074JivQue6CpehysetvZy3NeLPF1vuRWoK32KllXqPGYRaq4DSK1K6sN7iKLSFa34Je4b9wIGrQtu9mOn7hDLgWQwvdu/QKidAbT2J3e4O4IattgPkCkRv0ZQqX1WNe5EvUVvfYinvyRvbZir2YfAROfJHxyBMK3Chv7Be6AwqS43AleQ0Tn9xgNcip/mHtsWXgMrPAj2D4F8gH0GA/Ay/QKHkm1+7C1XoJ5sAN7CqQ742EafigCGLpijJNfuAJMS/5lkosWq8AKFEadWKrvwA17E/UHrwLb4CiwvgnCFlJLwEIwtNi8se4qPPkoXdAm1x5K8uZRbplLzXdsC7mVEnil4ZR82stRkr+/Bh618RafpujnWfFPPH8qjlXJR0Z5cOiyJ6jNjh//AGmk1+hk6z8a9F6XpprHDFqs+yX+eqfD4SfufL9f1/qXUpynm1WVd0rpT2ME5Tyu5yk/u7NSM3uPT9R+Pep67UZJ6TGtJimto991+3vR53Wa/V67N36jPOV1ce506r+xRGLT5Ha24NeLF6VwjW62YXEIGmWcseQKlygSimwqI6WxfE0kMe/Jqj3pbS3K4rcuUlFF8U8i/MyRdOTqt92jfpuo5IpJyk6VHPc1K7K1Jxexm8tTp6XB1hQaU03H7m3F1OGWmv5njnkkX6fUyxvZkxudPZ4tXckk+fc6WHM+xM8Xpdd25Yt8Wd7T9RTitnwYsbnT0Ec0nxexox6i+bMejywzYO7dOuA45PvaM2NOpDImuWWqe1GKEqRfGafkyNMaaJ+okZ0OpFDLgX9Ru5UK5ANe3IvjkCkxW1fLALfqRMidhTXoAKGWy5A37gct+QhnwK37E7vfYDf1LfYBiJolsIUa9A1S9iK0uSJ2gBQK3G8C37gFP3DfuK+SAa6RK9gpbBorKJ7cC3ugqLJJOiAthTK728Bugp2yX7CqRLAlAoHcRSYES/mNWwPuCwJasj9gPgQBtrB5sHgR3fIU3dTF7vAPIskA7kK2vQi9yuUktwgzl7UZs+VqDphyZb2MepnGEG5NL7ssFLzttq/Pkxa/XuEXGGRJxe9NGLW63sjJRdPweY1GpyrJKcp33Pc1Izbjq6rr+sxKSjnat3bbf8L2POanVZtVllLJklJSd1JtpAzZ3NuynvRrx9sXoGhkwXYEdPFz0XdjeCVY8Y2ixPqprcnbaL1ifoF4/YpihY2OsbouUCPYmrimnFkk32ljVsVrwTVxRbCpDvHYvymTUwsp0SM9yPG/QVRafA0ytUJJUzo6TU1JXbOOpMuxZHB2Stc+ntdBra4bSfg6Om1LnJto8XpNe+7t3vwdrS9QljdN2ZsdJ09K9TVbFkdR4un6HnVrp5HszTDVOMe5vejONa9Fjz3W9miLbRw9H1HC2lJvdc0dGOsjKSjGzKt0WR/qUxzK+S1S7tyKLe1EUb4A2iKXoAyW3kZRezvYRPcbuYApJ7iuW+xHJ9wK3AbaibLyCt0Cn3ANY63QnYxopoA2/JFSXoAi35YD0q5EWzI2yKwg0HYWyWFb62okUGk0RbIqADetwgbQC8OiNv02I36BsgWtyO/A4L9gBwt0Kthm6RX3MBm9wK09yXsBNgM9/AO32B31t7h7rADXoK478Ecmg9wCtLmhWrG9xZOuQpJOkUZJIsk7ZVkX0tvhc2VHP1uqjijbpeGec6p1PLmqMXUVt5/uaOs6qs+TEnHuTadP7nByZ12O0akZtV59V3X5fuzmZ8t3fI+afLowZJuUjpLHLrS5HuBB7Wy7HgcvBbcZJC2WKFl0dLNuoxZpxdN1E7ccbaXLHks4rNjhZphp296NEemaiN/5Uu5GrH07VVfypU0S9xufnWOOnYXpndHUWjko7xd+4v4eadVuTza8HKeCnTKsmFt7HWlo805UoMvh0vJ2/VF+xPJfBwPlSirplSUpPjY9b/whOP1J7rkSHQYX3pvjgnkvg85HBKhlpZtKkz0f/B9rt/sWw0ccUaY8l8HlcmmlBbozvDKTpI9Zm0cZ8rwY56NQVJMaf5vNfLoErSpHZzaBLemYcukq3TLrN5ZsEnGW12b455La2YlHs+4Hkcdy6w7ODP279zs1ZNb3RUU72POLVOjRg1FyVsmJK72nydv1W/3OjpOpKOSKlKkcXHK4bCwhN5VuyWOnNe50+qx5lFrIm2632Orjh9CafJ87xZs2HLF451TTdt091zv7fzPX9J6jkzwUMkVs6W/gxY6OrW1MiikK39grfyRlZGhrXaIltyRW0FDZ/cP6AUbY6QEXK2I+bSGoiQQIu92RtXswOuBePQKYF+iQU722A9ggWwrgjqkTwFK+QB/1DbAdHYV7IdK4lLe9FQyewlu3sN/ESdrgA8k39gRI/uQFPdbDUJH0HAWW4iRZwvAKtbAL+gaA0QAdlu6C1QbBJ7AJK74B3bhlKhHxdbgSUyqWS2wzlUTHkz9ttKyi/uttf7/3sZ+oZFptLPJNxpLdOW653owarrmHQ4nOdSydyUYKXPP9jzHVviHNq5PH3NRTtJSdJ2/6eSyFuOfn1Ty6nJkdLum3/FmPNk29QSm5SteSrM3W505jj10z5sl8FeODnIau6R0tHpJSlH6eTWxme1OPS3Wx0MGk2X0m6Ggkkn28nV0vTn2O+TPXcdufzZum9Ox5Mn1p1fp7r/uehjptPjh2xxpcWxMGH5SpIvUGzlbXacQixYbvsTfr+wzUa/KiyOOvA6x+xnybyMM9PGXj+AMegi221+h0vlhjGttxq5GfHo8Clbgv2X9h54MfhV7F1P0FaJ5HizzwKSaS2DHDFRL1EDVF0xllgjTM09Km7WyOi42hHAamObLSp+pTk0afqdVxornEaY4mfS9sdrOVn09uq3PVSx2mmueDm59P9V0WVOuXk8+naZkyYdj0eswqtl/A5GTC09zcceuXMliokLUlRqyQozy+lmnLG/BncElZtx6i0q5OEs1Pk1Yc7vkv0lx28TuScjv9Mm1KKieTx5pNJ2dLp/Vcmm1eCLpw+YrtpbWvLJ1G5XvIfkTvlWOuAfLXy4Sg+6MoRkpezVg4dM5NLo7rkKewIflInQVEr4LFSXIqoP7ANwhXLhond4ImAN2gOND7WheQIo/YFbEvYKargAKKrclUDurwHle4Ae/kNSIv05GtewG5NpCVuNBbbkcfQqFaFq/BZW24OAK0tw0G9uCbkES3Cgb9yCvsAr3XIqTXkd78UTxwAjYIuwsS6YDN07Fcr4DKWwl7cABu3uLP1vyF7IoyzUVuUVZ83bas5+XNGMXOT+le6X++Bs+XuTr7Hkuv6iWSHy45KcfR87Nf1EiW4xdU1v4nVTVdsYSai7+5zZNNmTNlcp03Y0G3udIxel/duJlltQO4s7e9cHSfHK+6XS4fmZYr3PadP0OHHjUquX3PPaPTpRTrez0nTcU5R3e1+pjrqO3HDYsKulE2YsLirQsMdbGqC4ONr0yDGHsWqCDCJYomWiJew3bYyQUiKXtJ2llMle7ASvYFew7TAti4qun4RGvYs/cVoCppAotoDQRROOxVL39DS4lUoAUSW2xlzY75NcthJK4liVxtRp0+TlZ8C3PQ5Y2zLLTxk/q4Nc1jrl5LUYWvJzckWnTPS6vAozdepx9Vh+rY6Rw6mOY07LsLamgTj2vckWrRuONdWOSMYplizRk9lb9LpMx4u2caseMeyXcuUTpvl9W6Zq/xPStDOcrk9Lje3ldqLpx3e55PoPU9THS4MPf3Qx41FKnttVLej0cNQ8iVqmzjXVqhLwNsUwmWKV7kD+xFuC+Ar9KCoS1QJNWK20FWckfGwqbG8BESVWR+yBdKrImgDS8k8EYtMA/clr0BRK9wOirYrbTCrQJ78BBvYV8ATdEt0AGndjICTD5Kgbp2HwRPwwNoioK36B8CsCfcrLG9iuwI3SFbQW9qFlxxuAkpKzDrsiaqP8zXLbG29jlwk8upae69iwUa2PydG8juq/SzwGqeaeaXfJtW9j1/xh1HJosWHT41GpP67kr/AGPJY5rJubkTpzMmKXePFUqNeeMbtFDqzeONJ5N2kgpLfmzGdHp+JuS2bVjq4vHOt+PFKLSS2bPSaGPZhXajFHTrsVo36R1Htfqce69XMxsxtvwaYJ0tirGkaYKkjLenirHr2BFj2TFLQyv0I2TuCjuSnuS9gppAGhKH7kxbVACgNBA3QAoVrYl2w2EVN70B1RY1b4EaCs8o8/YqcfBpkvcpathGXJBMyypNm6S3M2SG7LKlcXW47lscPUQakeoz40723OPrcFu0dOa5dx57NHcp7TZnj2yrkzbNnSPP1FuKXbEeOTudMoWy5FUqnyavxmV6/wCE8uPUdTelntWNtb88/wBaPYTgsU+1eHW58++FskcHXceVuK+hq5cH0fJlx5acWnaTvY4V35+Bj4LVsUwLEzKrLDfoIt0g+Qp3uMlaWwiHTS5YDcL9QeXwG7A2gEcXfgiixk1xYbpJUAKdLgL4CwbUAFxexP2JYANzkkBuyVZEgyFBTI+AS4SQUd2RL1BwSyiPkBG9yW64IJQsqXI17Fct/BQHwTt2sF7AtgFqwOO1kvgEns9iDHq8i7e1epT0+eHFncsv5U7aTSv/ALC6p/VVcnO6xOOm6Jm1Dyds00ox7qbLB8/6/wBS/wCI9a1GZflUpRj7KynDkpJexj7W3v5du99y6Mq4Nxy669tU5JlcgKVhqzrWN2pBXI9L0jF3yX0frZwcEE5q15PW9M7MCX0nPp24jpSxVjuiadb2WSyqceOR8EVaOVd41Y7RensVLhFkSN4six0/JXEZPYimkLYd2G62IqJuhk/cH6hSKoN7kXN2GmD9QyjbvkVt+oXyKwoceSNqwpWRxfPsEC7/AGAwk3AqknfJW0Wz5K26CKZx+xnyRs1vfkpnG7oDBlhcTl6vFS48HanFGTPjUka5rHTyGrx036owKP1HY6hgcctXyc5w7ZKzty83bPKO5U6UjZ2WZssakb6c47vSccV9dpOvJ6vQ6hqUYtpKqpHiOk55R1Ki39Nb7/c9fGLhuuTlXbn49BjkpJMsMWhyOeNX6G3k5trIsN+iFhsuBv0AfknD9wRa9iSasCy7JQiatDpqgoV5G2oiZLQCvfyTheA19gvZBCVsQLoncvQg2O1uBNvcLVoC2KhqYPuG6BLdADyR7A4RG2UQgLJZBO6thJMd8CS3Q0L6kSsleUNFbcgB7NEdNbjMHO1AYNVgaTlFN/ZHjvi7U43occI28nffO3+/7H07Bgi4N5F9K5pP/fg+QfFUIvrGTZqH+lbpLb0Kl+PMS3k+efJEy2UY+Cp7M6T65VZDk0JVGzPj3aNfa+w634zzGvpmL8RmpbVueowQVKkcfoeGOJvJvbatHfwpbUjh1Xp4jVjSpGjHs+CnGtlt5NEF6GHVcuSxezEgpMsivUY1p488jUBLyMrYw1Ix35Gcd+RoobtVexPE1S9mFIt+Xe9gcKJi6V7eQNWWLHY8cOxTWdxbJ2eyNUMCfIXiinVouM+TJ2/yI06NDhG+RlhUo+f2L4p5MDuxXZsnp6t0+L4Kvw7/ADNOvsMJWaSKJbM3fh5NPti39kZJpKVPYzi2q2yuT2LGr4KJXYFczNktI1TaszZVsP6WenA18bnfk5OTHuj0GsxNps4uRpZKZ34rzdxkezpmbOreyNeVRu0Zpb8nX7HC+qbSSXfzT9Ue06fqo59Njtput35W7PAJyxybTo73Q9X2Wm/D2Zx6dea9josvbkUEnVHWjLb9Dz2nzxtTXLR38E4zwxa3deDk7RantyOtytPei2OwRKr0C02iVuN4ClWwyv2AlvwNS9ADyvAthiTtTCCnsCTJwRUwClaDQEvNsb9wNSlTA9wL7DXSVIqCqXIuSTvYDlfgV3QBvYi34/cXciboA8cgTd+wN7Y0Xa4IC2q5EbokrAgG7klwSL9iPdcEvYAOXoKnLvT9At/zKc2qhig2/wCAFfXusTx6XDptJXc5f5kqT8rbj0s+YfEDnLLFu+5X4o9bqcsMTllnk7V3Xu+X/c8Tr9T+Kzznv+Z0mbkY6c6KdUJKDsvWzrg0QwxcNzpI52smKNSR0o1NJGOcVF7GjTv64pltXiO/oF8vGkdvT1KqZydPFdsWjRLVyxUoc3ycunp5d7HhXZ3SdRT5BPX9P00njyanGpxe6Ts4sOm9S61iax45RXd5bSvdeP8Ae5Zj+AdY335NVjir/wBLTk3b9V9v3JI1a7eDqfTMklesgrdbmjNrNHj/AOXmjON0mmeV1vwT1aMa03y8lOvf1vj02MeH4Y61jXzMmCMIOTdfMdr0NYx5PcR1OGSb+ZHZW9x4zi5NKSbR4bLpOp6aEHkx5FUuFJvjh8kwdZ1+jd/Kjk3p/MUl/UWLK928kYuu5WPGSb52PJ6b4ieWT+ZhWNv/AEq9v4nXw9SxZH9Lb2W5lvXdi04i1cr9ijDl7oJmiHCMmmiqYZypEbSM+fJS5KGnnUFV/qYc2rcW33rgoz5201Zy87yTl9PoaxF+fq1SlF5Ev09jm6nqEpS+jLbrZ0vYE+l58r7u5Jer+xq0nQHJN5NUo7bKuSpXHXUNXD/l5d2trimVPX9Wyyfy458lx7WoY0k9/Frk9zptLpMDjUYtxVbxVHRxaiGOnCONe6hG/wCX9RbEj59i0fxDL61gzp9v+pR2Vv2ftwacceqYv+ZjydvuqpbnvsvUs2R/VJulS2oyZNTKVW/HoZ2NSvIy6hkxyueyS32ZbHqMJpbLi9mehvE27xwdve4pnO1nS8eeMpYp/Lkl4iqfJMWVj+bGUbXkrnK0UqE8U+2W5bWyGNMupSlBo8zrMcoZLPT5qZxOoxS324NcuP6OS948lcEpyaTJlm+2kUYcjjPc78/Hl6nsc2Nxu9y/pcn+IUW6QueSmh+nw/8AdR3r9DHUXl67BjuP29zs6JvHBL+pzMWKUIpXdo24ZtNJnGvRy6kJepfGSM8HHtWxbF34Iq5MlsWMdh0giIZKw1T3CluFKqDwSKV7sLjfARG1XAFXoGgARukiWwNbIlewG27DTBFhb22EQrVC3uSTb2BwUEmy8Eu4i+fJBPOwy2Fretxl6ASV+go/gFAKBWM1QvLryUJO+DnZYOeVQd822lwjfmahVvdnmfijq2DTdN/yVLJmlLttSqthD+PN/FPUFqNdHDg7vkw9XVv7HA7rdlC+ZKbcpScm922WSlR0kcqk5JbskdQ0qTKJzvyKrNz0xWl5b8l2kl3aiCb2bMSe5t6a1LW4o3T7lTM261z9e0hFRhFLijfoNNj+dGc0nTunFPw/YzSh2tJeOWbtK6ic7Xp5d6WsXYowUYq7qMa/kVrVTSV/yMUZ1G34Muq18MUXJzqN9rIuOy+ovGu5OpJ82ZMnV8k8koRT55tv+Z5v/i89Tl+TijLd7KrdblWt6/i6U1+Jxyk3KqRqSp6d/Pqc07Uqa90Ysmnhnb+ZCDXP5Ezk5PjfpvY0tNlW6+o3aXq2LWYPnYV3Y/LfJo2El0mPc5xdL0SoC08sU9m0vY6OkzRzZXjl9Ml68HR1XRsnyHli4ySXCQsWWBocz7Er8cHTwyvk87otRGDlB/vR2sOVON2c602ylRjzysueS0YtRkVP1IuMmVKxFCvAksl5KNShJwuh7Ss08lKlRS82Tw6Q+qyxxQab+omg0efX455MCTxx/NK1sbkRITlKVdzb9EXfiJ40nex4XXfEHUI9Vy4tJmlHHBqP0vZte3kTJ8R9QeNY80pOUY03bbX8DXiz5x7yPUZNtexbHWKXPJ53Q6fVarQR1mOEpQULtOwabqKUmsm3hWYvCzqPTfNjIkptLnY5Wk1scuSr2o6HcmjLarNGMvC45M7x1saWk0DsTQ0czNGjia9JpnpcuLl0jh9Rw7Oka5rHc9PK56UjOvzcGvUw7XujHGS+YkdpXk6+r5R2BCU8eROOzS2d/cee4q2lZOjl7XpcsubTRbTltzZ0YqSkk01Rwfh3qGnxT+XqHScH2ur/AKe56eEVJs416Ofh8GSLaTZ0IJJI4sbhqdjr45ppUyC9UhlyV3vZYt0FNd8B8CJ7j7gRDeCuMt6HbAjADdsd16ACrrYlewVTp0T9CI0LbkZPYDojkvc1EK9xKafI7pPe+BWBApexFbqg+fJBPL2YLJuuCPcoNg7ieBQDKWxTPL2bpblknsZcrv7AYtZqJTl+ZqmjxHWMdz7lu/6nr9dfZtyea1mOMrbVuyw/jzMsahvRlyvdnT1EabVHPyJNs3HOxl5GeyHcEuCuWxufHIvcbujwlk6pgSr8y5OfTvhnovhbQynrY6mUF2xe1rz+xi1vie3tsuHtytNNetjw2S+5fNLJJy9W2JKKRytevmJmm4YHKzyOoy59XkljTT+t9qadJ3yem1TeTBLHdJ8nL0uN6bUdz5LyvUeo+FehaXpvTXmzTjm1OWVycW/fxXH6nzT4s6g9d8RanHLFKEcU2oRkt9v/AAz6LoerQxvszd/Y20tk6dbGH4m6J0rq+P8AEKKxayO8ZRiknz/c7c2PP3z08Dm0emx9NhnjlfzX+aLapfoe6/we0q6h0zrPzYKWLFL6Ku7/AEaPL6b4Y1WWePHLPCELcZPf+32PZdLw5+i6GWDRS+UpNuTh/qZbYk5rVrej4tHrcuaOSouVqL5TOjo+r43D5eR3Ua2a9jgzw9Q1eacu/uc3cu+XBqWkjpsMm5LudXRi125jnZM0fxspKNfV5Ozp39Caa/Q4mVReZtLydrS/8lbLg510jRKVmLPLk1t7GLUprczGqwNt6hUdmWpSxLZcHMVXZpilkVGmcV5XhzTvL+Vc88fuet6biwY+lZsGlywxLJhaXbktpuvR+7PJ5NMmmk62oGmw5sGS8U2r2aTr0N81z7j5xDHm6P1TKtXKE8iyNqW++/uVdX18NXnllSSpUtr9PQ+k63o+DqUf/c4oyl29vd5/kYF8L9N0sXHHgU6Srvp/fwb1y8PbrfBsc/Sei4lmSjl7bjzaVu93/Y5HWtEtXrp6qOTtbf5d6f8AE6WTLnlFR4SVJJUqMrw5ZPfgxenScYwdOShNR5aXk7UfqRkx6RRn3KuDVjTTOddIs7aQVEdO1uHjwRcZ82P6Xsjia7FafHB3srbTOXq4v0RqfU6+PF6/G1wceLrLbPQdUSUmeemqmztHj7ntu2pEdNCRtwX2Gj7l6Tkccuya8P1Vf2PedG12N6LEuZST5kttzw0cXc7TOx0uOKM/8/X6fTRrnKpv9Kin9zlY7cV6t9s8iyLyjfp3dI5WDJCcPpnHJHxON1L3VnR0k1+lGWnQWyRbGvJnjJMvT2RA7SvZDV9JWmMpbbhRilRNr4Amhk0luERxVLYldoV9RGttwqV5JZPT0JsRGqtgJbsZMEm/BUK3zt4FteRqfkDiyiJhsWvuTegBe4bBdB7giXsB1RJcC2RSTdIzTkkm2y7IzFlk22ioxZ8ndexwdSrm1X7HoMkYpXXkwZsEJSbS3CvG66MovZHKk3bPV9U08Y+DzmeKVqjcY6ZkxMkX6FsYU0XzUOxep0/jlinS6T8RJLi3zt/Y950bDi02mjDHF7ct+p5jpWNSyxdbWe10qxwxxUV5Od+O/wCcbYJpJPYkkNGWw2z8HJ6GWULYq0SlO/Bt7E1wNFV4Eox/gF3JprbcZ6eae+5sVWWWqo1OksJh03ak1S88Fko1aLIz2oZJNW2a1jGeWX5SbaRzdRnnmyUtkbNVV1sZFj3uiWt8xmljp7nX0zSxJbcHMmk57+p0MLSgjFbxok9+DHqZGu9uDJqOGDGdLu4Q8W4NITFJNlzj5pFKvgu8048L9DHhk4s62HLBx8FjnYXsjHlFc4wb48FmSpcFTi6NWsxVPHD0RTKCbf2L2VujDpFHy6F7EmXtCNbkCrYa9gNUC9iKSdNmDPGzZJ09zLkavnYs+n8eZ6vpqTaS4Z4/Lamz3HU5NtrxR4zWRSzM7x4/1aNO7x/ZAnNcD9PSnCcfRFOaPbka9zdnpxlX4p0b4KLSbSdryjlwdI2YcvCZzx25uPTdP1EVjjDbZeDsaPMk/ajymklvt6Hb0jez81sZsdJdemgrSdeC/HzTMGl1CilF2bU1dow0ulFB7VRX3odNVQKCSsLSZLVhVUiIaKaCyLgDZVF1QNvQnId/QIvjKvBG7ZEtvJKdlQ3cg3sK3QrnsA3crA2mLd7k8ATuoKaYvKIgG8CN7eg9qhJ7AZ8jMWR02bJvYyZaAw6jJt7mJZ6fJp1cWo3bODkzOEnyFUdSzOTd3R57PNOTo6uu1CyJ7fxOLkNRjojlXBO7uqwUSWySOjl/XoOkRj8pNep6fRyuCT9TyPRp/T2+56jSTqK+5jt34deLr0L4cGXE+6jZCLpHDXoMlsH9R1HYnaJQqW46SGUURx32ZZVwHLtYs5OQyg35J2Oi6k5ZMkWyp7RZrlHkyZfpsrUjLfdM6OH8qMeOPdK0b8cNgp/HJnywtM19jrgoyxpMiOcl2z5NcGnGjJlVTvYvxTSjvQK1RgmrRZTjug4F3R2rcv8Al7cCekquOauUWLNGSEliV7AWOkPKp4hJp2VNblvYNGC8k1cU0BwsvcUmBxoJihx2Kp7Ki+WxRk4KM2R1dmWaTNGV88GPI6Xgf1P44vV7jweN1Tbys9h1Fp8+55HU189+h3nt5P1aenJpyb22F1W+RtFsIfKwqS2tGWcu5nSz05JB7miD4MsdmW99LY5tSuxoMqi6Z6fQKDir8ng8OocJWeu6RqHqY0ml9Nu2jFdea9FCCjumbMM7dMwaeUXS7lXnc3KH+pGHRqcVWwYqo7FEZN+S+D2oIK5GVeRUtxr/AJEDEb2tkStfoB+hVFX4GoVIIRqYVTRKD4KhZIraosd+oJb7X4ARNUHYHbXJGBFQKC/0F71v9gGRXOaugSnsZ5zrdgHLNKJz8mRN7MbLqIt0znarUdiuKQDa3Ilhf1JPweczzTvc0ajXPJBRkuLONnzyRYaz6qaT5MEnfBdkffdlElXk1GOgsSckNRXkNObq9JyVPk9VpZtpL3PH9L2yLZHrdHwiWenT867mDxxybo+NjHpl9JqT4OL1Rojb4qi1RKYt0vuXQ35I0ZR+wXEZKlsSttwpEqZKsdRsdRVDDWacKTfKOPqMn+Y1Xk7+ZduGTODkx982zUNHT05HX0mJ5JqKq2cRKcHsdfR5pRppruRUtdjPofl4e+47co4uoXK2Oln6hkyYXGVe5yNRP9iVOWHLjbfCK5OUF4N8cTkivNgfY3Qarf0qUckG2la2Ojkgl43OF0p/LyzTSpnceVSoMqXj814FcEaklJCvEr4GGsk4OtmVRg1J2zZOFcIplsTF0El59BJUOt9xJr2AqkZstepfPbwZslb7BKyZdjFmklybcqTTOVqZtbIsjFcjqk0k/seVyPuy3+h6LqHfkdVb8I4mbSzxzTa53O3Dzfo058kXhUV4SMVpglJi2dbXEzaArbByhoLc5VqH7aVm3QZMnzaj/wBPj9TPJLsY3T9VHBqVKVvxSM2Ny+30PpGlyOClJS3VqzrwjJKnZh6Jq1m08Eu6+2+fB1JSV3vuc67q4xpl8CtU3sWwiA6Xmgv24CqUWiKmQRJ2HsIhvYBUqYbZKJS9So2J2iMCCEChWh3wBvYorYlruDJuxWne1ACT25oqT3q7HmnXgoeRR55Avq0ZNVUaVjyyS7bXFHE12qywyK1tQG6ekjLE8ndVK/uea1WdpuLTOktXkliSb2rg5eqz4WrtXv4KOTmk7sxZJJp2y7U54yX0s5/1PllxnQm1ZVJWPNA2SNyM1W9iqUXKRdKmWYoRe7Nxzq7QQcZps9VobaS5PN6dJTSR6TpjTpGe3T867mCaW1bG2E06MEFT8GrF4dHCvVG2DTLkZoNF8WiNrL3LEVJr1LFJeBFWQjbGm+0WM6RXPI2VlVqcz+W40c/DFOTNmb6osxQ+iZWsc7rnUYaCMIRjH5k3SsPQ+rTzqay40mnXk1dW6Xh6lp18yMe+LtTSVrn2MOm6fHTStSt3fC/sEx3fm9z34s4vWdTnhHt03Ym2rb9PTg3YnS39SjPgWWfHLCZXN0PxXnwahYNZgU4TdRnCO63XoepcoZMKa4aumjzeXoeLPqFkn9NVXalymdaTcIOMfP8AAjWLcMUsjcTdF00c/Rq27R0I8BK24ckfOxtnGDjtRxlNp+xrx5XJeSs4fIqbMs43e3g0Nt3exVLcis9UJJl0kiicdwKMr2Ms3Zoyx5+xQ1QGfIrjwcbVbSZ2sqqNnB1mRfMe5eWOmbS4seXWRjN1Hz6j/EWhgoYsmDHUe19zbXo+P4GjpGgya3VuUJJKC7nuuAfFeHJpI48dv6k73XO525uOHU9PC5pJZJJcWItxs8f8yX3JCNI04GS2DHZkSIrsxWoM5vgXFh+blSjyyS2V0WaTFOeaMod30yV9pmtT69Z0bNqtLnh3PJGKhTVc8/w4Pa9/dFbvdeTzuonCEMc5cqC55O7o383TwmnaozY7xrxRLU0hYxpc7kat8mVWKmMvcSC82WVfkjIrYFqqJW3IP1Ko2rBZGDYI2+bJYUq3sjdhAbF54HddvuJLYAV7iS/MWNCNWAtWZ9RgTj3J/oaaaJ3JsQcR6nstNNfc52tzLOlwqOzrtJLK12tI4eq0WaDSSb90UcbW6zJgg1Dymeanq8sn9U7aPVdY6dnwdOlqpRl2cXR427mzUZ6MpNPdheWiOOxVJGmbUnluWwqbYGtyeCxm1auCzHJLYpTpbj4Ep5Urous5tdjp2KM7lJHX0DjHUxilyzHj0stNgXlvZe4mHV/JzRk067uSV25mPYxq1XlWaIOjFoMsc+lhkTXhfwNkVucq9EaIv7FqopjwWRWxltYn6FsKaKoKixOiKtaQk9kH5iSKZybBFU5WzPkxWy9oH6F1rGXtmnV7FkcNl/anzyW4sd1t5KihaZDx06UeDV2UBx2CRinhbAsK8mtw+krcCVqlhDs4NESpR9yyOyDNW9qf9x1a43ETHT2Kh3Irb3foS9xW0AsiuRZsVz5CKJozZNmapmeauwjJqHWJ/Y8zqPqyPfk9BrZVCS8tHm8sck86hDmWyReWOnf+HH+H+ZJPeUa3f/c43xxq82XXYt2o9jtXs93Xk7+TpuTQabFunk7bkl4PKdabyZk8m8qrc6uXU9POSj3NtryNiipOjRqVGGPYz6S3lLrji+WGo8Gftps252kqKowT3JVjG43Juv4Hsek6fTabpMFLGpZJbuTir5v0POQxR+Ym1wb8WoyZGsWNSk+EopujFdOY7mRfie3HG0qq1ueu0uGODTYoR7vpiufLOf0vpePTYFPJJ/Nkl9D/ANJ1Iz3oza6GsP7hq+B1FbIhQT9B1XqwdvgKjQQHfqTdcsZxAo2FFK+WHtXqBLYNBGpsF0QG1hEb3BJ7/oRgbAPKIuQJ7hezTQQG+UJSDLbdoHcFVzW+5lmlPIl6GrJNONGOXLd0DXD+PNStN8M48cZJTyydJef90z5riTbXn3PYfHuVylpsUcvdGKTaT4543PIYW1Ler9jXLHa+qVFMqNTi2roz5FTOjFVVuChkR0WM0vg06BOWsxRXmSVXzuvf3KaW5R3NTTvhp7kpL7fXMXS8efTYpTx2m1e73uq87HD6v0aGCUcsFtxz/Q5vw38bZum6f8Fq8eOWK7jJQk2uP/l7DdQ+OHrZwxfKgsSdOXY01/8A6ZNeidR2ul5Pl4FBy2T3pex2Mcro81o8l9sotNPfY7+nlcVujFdea3RVodbfuVxY7ZhtYmMmipMPcRqHbFfqLe4JSVfqFRsAtp7hcko2E06oux5Ixe7MTyxSuxJZo1dmovja6s5xauypZI8GPFlWTayylT3NE4rRLJGiqc4mPJlUXyKtRFx3JWvCtvcrC5pMxwzRaLqtGWby1RyJ0Wd6ObLJ2clmLP3Blucr4FsrU0Tu+5FWN78CS5CnfBKKyqkrRnybX9jRPgzz4ZUcrXcX4OPg1ul0etWXPKlBN/f25R2dXHv7l7HgevSgtY4Rkm4/2NyOX6dY+haz4k6Vm07eLL3tx7k+3j2/geM6lr8WozJ42/e1R5lLub2W5owuSlcmbkcL3rXql3Y0Tp+P6m2DLLuVBwtwj6FxLTyi8uqWOLXdJ0rdF2PEns2jHBOU23zvX9DXGag6vbwCJ2PvpHW+GtM11ZzyOoqLpVyzBgj3zt8HcwKMILt5rlGOo6cvSLUS+bUXSfsaoydrc4mizSk93bOrhm73ZzdW5Nlik65YmP6uS1UgyMX7jJ2uQfYNX5IA15sL24fgleANeoDfqS/cG1EtFGvhCDOuRW1uyoST3BvYbt0GX08EAryS/UjZH/QqFk7E33GZW3QUsla4MmRNP0LpzaMWozSjJPZ14IPK/Gemjhx4Mzk2pKl7c+542E0pfqfRviPH/wAR6LLAku6NyVc+fc+au1Jp3adOzXLPTpQyJ4zHldyZMc9hZHRzpFYy5AkCVrgsZOlZVLHubdHjeQTVYnjnVGsRTDFFq2ynLFRnS4aNCaSM+Zrv/QlmJOnsuhZ3n6bhlKFTUnF+6R6XSNfLivPk8J8NahRzy08pV3JON+vk9rpXVWjn1Hq/K+nWg9i1LdGfG7SL0zk7wz2RW37hk354BRGxuomaWVKRpf5Dn58Ep8OixFmXqWDFHtk1f3fo/b7GHL1Pv7lGqv1ZytdpM3zXW6vmxcWkyLlmm+I6K1ba3rkb8R3f+TNHA9i6OFJe4emQ61Hy+PX1Flrci48+4Hii27FWNXSV/Y1F9C9S3yVvUOy14VXDEeBejC+lUtdLH+X+YJfEerwQl8rHj7vDk3/caWnxtW0J+Cg3tEy5d8s+n6v1HqOolHLU5Um1Daq28nf0ePPFR774XLLtDCOOFY8fa6W/qdBLulbW79TNcLMLFOgp0yykthXElFkHfqMIqqg2lsIzSTVoy5YvhGqT2M2VtKzTLma68GHJkqTqPC5PmWvnLLrMuSX5py/gfQ/iPWrS9KnJO5PxXj/dnzfJNzyNy5OnLzftUj9i2KKovg0xVo7cx5ztOrHw/XsluDJLtgkLp5OMuSVYtlHsYjyfUX5E2rKOzuJWo1Yc6j9zoYuoxSp/qzjQg09yyKad2c66SvoXT9PjlpVnjJONK2a8bTvtdngMHVNZp04488oxaqqT/odrQ/Eerx/MhlanBxpNxSfn0Riusr2eLZV5L43e5h0GaOrxKUZq6txvdGvdediItjsN3KiuLv3DaAsuwN+4LfhgbYErzZCINAak/USb8DSaFe/gqFh7hkrBaTCwIkK3vVDPcDjuBTOaTewlpoOWNbmeWRRsCZWlE5+aUbLM2XZ8HN1GVq9zNrUizLkSTrmmv4M8T1bpy/EvLB7O2z0mTUc72crVpzRny9tXnY8+sXaiuUDbOG9UZ5KtjtzdcOucUwW9Fixd3giW6NUI1Hg6yORtJWF7g1s1klaKp5KdIolld7m2akofTZmnjtm+FTxMxTfbKiWJB0eX5GqxScHOprb/AGj6dpMcZaeGWKqL5SvZ/wC2fKZq2ew+DOozyXoMtSSl3Qd7u6OXU12/O56e2xyX2L4vb9TLCopWqZoj6HKx6+ase5O1kYysy3pa2Kcq9i+XBS97LFczU4bTd+eDEoTg+HR2pQt7kWnxzpNFb5uOTGe5q0+D8RdOkaZ9NhH6ot2ItLlwq4N8iOvP6h/wrLlfbjlvwbtH8EajUpz1WtWNWnGMYKT/AISMENTr9PPvxylF3ey5NM/iT4hnBx/EqG6pxi72v/5G45999X4v6j0LH06Erz9z7mknGv6nDyJptL+B0Jx1uvySy6jNkySlbuUuOR1oVW9t/cWxrnuye3Khppz3p7mzFpq5RvhiUFVDNK9kc9S96TFBR9TVH7lUYr3LFsSuX1ZQrW9BTv1J5AjQrQzf3Ek9yxm0s3SMmaTf03u9i7Lkr1OZ1LWQ0mnyZ8l9qWy4tm+Yx1cjynxf1KGRQ0Me6Vbyfc6dHlIx7pUv0NGs1E9ZrMmaT/M9l6GvDoXGKyN7pcHbnnXj761hWOpGzAknu9inK6k0kHHa3Z0kxzW513vYiw1CwxanGvJYn2x3FWGhK4VbJ29u6ZIvaxfm26OddIPnkshFvgpkmNim4zOdalW9jU1Z0tNGMpcrZfuY95mvR4n3bszW+XWw5p6f6otrbwd/p3UJ6lRi3vW5xJ6Jy0rlGW6R0Ph1yxvJDI09ttjLo78brkdce5WpW+R1JoIZJk/sHdkvYAXS5J3e4HbXsDt/+QRokxrtCy5IVB7N7ZJqv2I23RJJtUBEk1dA8k3Sol+oCzj3JnO1OJ06Oi3RVkj3LjYaPO53KLal6GHM7R6HPpozXC4ObqtB2xtNGem+a4WRb8mbKk1TNWqThIxTlaOX9dZZjFmgkc+dNujo5t7OZlXbLk78OH6WB/qRr2WPd+DLB7hy5Wo0d489UTl9XJRN78lkmVSNVhs0s7i0VZ41LgbT/TG2TI+52y/xnWVo0dM1sun9S0+oi2lGa7q8qyiXBXuntyYrcuPrGmz49Tix5sM3kjJW/b1NnfJZEmfOfhfqq0XUMenyKbxZp091Sv8A8H0eXb9LjxL8re1nLqPXx3saFOkGOVdyszxlcbbGil/E5V0lX5HatMovwOv1Eku7jYNwOR4rcrSaZdBb8DWjpOhuUHtsaEdxpFThbD8tNGjtTCoeaNaqiKcdhu1lrhQK2JWbVDh9wdtF3aLJEFf7hXuRoKZA8QPZi9zRHIsSjYje7A5FMptRbs3GdDIrlS8nhPjLqvz9Wun4+7sgotz4v2PQdQ184xyY4tqVbbfb2PDdQjPJqH3u5OtzfLj+vXpk0sU5qUuDfqNS0qT2qgYMChjX2M2qVNHfn1HkpcKWXMlbOjqcEMWH3o5eGXY7L82plOFXsXRVHJ2y5LZZe6NGJvfkdS2W5nVdDHNKNWUTl2y2K4z9yS3RKsq/HlukzTHtTTaOfGfbI1Y5KVMxY3HUxRTSZtxqKX0yV0ZsaUsKitmNiwThK3KznXWO9pMs3jpv6aOroYJTcqS2OPo8jcEmj0Gl7fl7fsZaaE2mXRn7lClfBbH9CItUrYZMRSphctiqF0Tv9hWwWBuq3uRquUHuXoCT3KyNJ+APZ8B9AyogRxsWq9B7QrAWXHBW3syxtdpSnyBTPy1Rz9XmqLVHUkk4HK16ik9/BOiV57VyUpMwSSo36mP1GKdU0c8dJWHM0kzl5/qmdTPTi0c2eNts6cVjuKorcXMmkWqFMTUcI7xwsZmxbVojdImGDy5VH1ZrWLGzHCsViSVo1auCxY4wXNGRp9uxusYzS5YtWWyXli0TNVXvGSd01uvue3+G/iKWX5Ok1knJqVRbbqr+x4qasWD+XkjOvqi7TM9R046fYpScXX82PHJ9KPJfCvxLiztaDWqUMndcJ2qlxseq2SXa4tVynZw6nt6uOlqkDuS8lSmiKXctkZx1XKmy+PoZYM049+SLq5Rf8SyKp7iQ+xahFPCJYoqqDCNodQo1GbVUooqao0SSXkpk0KmqhZUO+LKZz2MqVsFlcp2xHkXqMNWSkvUVSryVSyJrkT5tGsRdOfbFt7HK6hrfk4pOMrb4SH1vUFjhJxbcq4OO4y1s7XnyzUYoY8ctU5ZG265s4WuUZ62SiqS2Payxww6VwSS+mtkeS1GJfipUt7N8uXcZ3jaRztY6aOzNPtOVrovtvyddcLGFMEpBjBtCyVBkr5DYAmVMnuOm2VodAgvkvxZOyrKUrHjHcy1K6uDM21TOnp87xZYzyNuKXhHD030yTOos1qq2ozY689PV6fJo9ZFfIdyrdVTNeOU8b7Tz2jfysay4nUvY6ul6hLLkcMvanVp/0MOjsY3f3Lop+pkwzbj9LTS4ZrUnJEQ1PbcZWIrGb2oKjcV5F70BihNdKqI0Ne5JUlbRUJfsRv09CWmK5U6AlgdeordsFgDI1RWpRUR5bpmaU+24tbMBlnx7pyS87sx62EZr6Wr9LKNZoe9SnCSTa82eN61HX48tRlleO0rjv77bExZcdbVJRTOXOS7tzmafS67PUljyUue5V/Q1fKljVS29iY1pcrttGeUC6QtWzfOMdVS4GLP+Z0dLLjbj9JzMmOadM6641mnGzb07B9fe+ChY22dbDj+VplXJuRzZtdP5mSNcLYSSSgvUSdubt+RckttmVFGUVKwze5Zhh3cCCiSYrVo0Zo9rKGhZp8aenwnDUQywbUou01s1+qPXdO61m+ZjxZ5zlBqm3K3wvVnlukPu1kMTdRk6bPQa3QfKnGWOq9Tl1y7/AJ9PSQ1CyN03Vj/NS8s83pc0sdK3ydDHn7l+pzx6JXXhmTfJsx5PQ4MM1Lc2YdZHZX5JjWu5CfBYpr1OfHMmuXuWwzRfky1rpQybbMLztcWYo5dtuCPLfBpGuWS/JVKVFSyKuSjJqEuZAaHk25M2XKle5RPVKPmzHm1DycOhiavnnSfO5W8rb5Mfe292TvZcTWiWZR8mXUa1qL7XyuUV5cnJmjB5pNcBNLGOTUZqbbb8nY0mmhgT5bdCaLTfK3bt/wDdG5Y/psIz6muxq2eZ1GCS1cmrps9RlX08nI1EY97kzXLPUcfUS7NjBq4qeFy8nR1sVK6Zzmri4t7UdY4dOdClaKsi3LXGsjQJwaVlc2ZjLgjRKIoodCxj6lsUiLBiixKiKPuM4siw8J9rNmm1cFP/ADL7fY5zdCSm1Fp3wZrUr6Li6c8eCGXG4yhON7NM5uqjJNtbHm+mfEXUOm5O3FlbwNdsscle3se4w/htbgjPDkjOckm4+Y7GK6y6HQ+s3P8AC6hRiv8ATN7JfxO9GTlkuLTXsecz/DmpzaXJqNPKDcV9UHHevvZf0PrKxJ6bPFtRjUZ9y2f3MtPRU+fUjK45fmK0thm9r9ggSFpeob7kKVHUjzdDSaaFvcgEpVwI1b/QZgapgVuKvgDXhDPklbgInQstOs1vjYM00Z8+peKFLjy/QAvRd20pNmPUYNLgbuKk/uNLJ2aeWbJPtglbfJ5nq/W9Hih24ZvJKS/6SjRr9RhjtjVX4POZ8ltlMuorJzHtv+BVPPGSsWGj3peQfMSklaMeXPTZXHNvyXmM3p2e+PZexzs+SLmIszkuSqe/k7SOXVacLhs2tzVmzR+VS9DFCDhDvfBny50/JpgZ5Eimea1sVSm2gLdE0GLc5nW0WKKW7Odhj2u2i96hxezLEWaxx76XoYmth5zcnbdit2ixL9WaHN8jXYZ+k1/v+J9DzxjqNPDJVKSUkfNIyrIt63T/AIn0jp/Zm6RpZRm5fSk2+eDl07cMDw+iJG4UjbLE1tvZVPF5OevRCp2PFVumBY9v1Ck09uA00Q1M0kvcsjqZlKXsWRW3BnFlaoa1w5sb8b3evJmSVDxUVyXDTvVSf5W+RZSnNbsjUVwDvoFpHCfqDtZZ3NitNhKrfFCetl3Y2grE+QjFKLlJJeTXptPV2XY8NyTa8m3Hh5oETFjpFjVKi2MBZcuiKyZYbPg5GuxuEXKjuyT34Zl1mGOTTZG2l2q3+5YnUeOz5Fbs5mfP2yaXkfXajt1M43w6ME7lO7OnNcOoshBznd7FmeC7UiRmowoVXN82dMcmScWvAE/U2TjFp2ZJxabF9CWN3NMqXI1mBrxTTaTNahHtb2ObB7l6m0uR/W4GRVNivdElNC91msZ1XKEk7NGh6nren6yGfT5pLtVOL3TRU8njwI2jnedalsfSOn/4gaLMseHPgcJ0rcYflfHqdLrPQs6xR6lpcacM8e5KLdTXt77cHx+eNSTTSa43PS/DHxxr/hqXyJ44avp7VPFkvbza/Uk5anb3/Rtf8/BHDmioygvzHQlvFtLY84uvdH63BZNG3iyyX1Y8j3/drfj/AMne6Z3PRK94q9/HJMblV3Lu9g/V6ot7e6XAOwiuiuRgcMPhkAW4GmStwN77AKMuOAU2MqUdwKclvZI5vV80MOgmoTj81Lz4/Uz9d6hngni09RvZtHBzaPNPF3ybb+/JZErzur1mXJBwm1273T2LOm9Mw6uP+dP5cE/9K3aPTdF+AM/VYZNXrXkw6dflanFp/dch6v8ACy6Tp5rSZpSpcTZpI4uu6V07S6ZvFln3Ljuldnn8su20jo59PPtvJJtr1ZydRGnsxDpRJ9z5DHG5ukCEXZrwJQkpS8Fjni96WOHTq39TWxXHBcXKT2ofNmWaUYxeyE12dYtOsUfzSNxKy6jVf6I8GRy8A+5ORb7YPGDkWdqihYukBybZr1EXRewsuQd1IXusqfwWTchPBrEVNfX9z6B8NZnk6Njjv9Fp/seAfJ7b4Saj0yaj3X3O0cq7cfXaeO3tZVPG1saornYE4W+DjXqjJDGWxxDdlPgthvtuNaIsVIDxO+Ga1Djd8lix35YGFY3XkPbJ+DesK9yfJ3CMHy5e4Vjb5N/yUT5SXlgrJHE0h1jNSgTsogzfLpBWN0aOz1HhGyCrHje23k1Rj28hhAtjG9wpK8gkvH6ltchhjct1/wCAjm6zJHBjttJnJm55ceTtnH6k07LOs6n8RrVjxuscVTjXn1KNZ+K0XTZ5od3akt6+3/c1ynTxWfp2SGfJ3ST+qzPkx/LYcvUNRLJKWSXdN82Z3OWR7s68vN1TynsCGRxkSGPue7Lp6eMVdmvGsKXLyJJ2M9kIWheGFkasii2ZQ8G7LXshIxUdwylaKuq5S3ApbkbF8iUNJ7ihdEZfRqRdojin5AtmHcek3COL54fquUek6P8AGOs6Xp46fJhxZsMY1+W2zz1MnaYsanWPrHQPivpvVaxzaw5e12u1rffx9kdu1/1I+IaXUy0WqjqIRUpQ/wBLez/3Z63/ANey/wD4WH/9THi6Tt9O23JtTZGSKdMw6I2K+QtewGwFtCzt7IZxVi2k/AkRwNW8fznGX5/UP4KTwdzTqrp7C9UWOOrbgqbVnWhLTvRYscd32LuSbZVTp2rlj0bxyrtirq/+x5/q2o/Haly7tqrtVV/I6U/8rFOtr4TODlj25JNuvIHL12FqLSo87nx/Uzv63O/mOmmq5ONqF5NMVjiqH76REhJo1GLVuna722yjW5Fkmq8BhKtrKMiuRtm1W40i3T6eWaaUUytq0aNJn+Q7Entn+L82jeOCvkxNdsqL8+tnlly69ChvudmrYmUXuiJEGSpFkSpToj2iNaoSTNWyRIXHjllydkV9T4Pa9C0OTR44ueS+7mK/Q8v0vE5auM/ET02nzzWqhHuainvt9jlfjrxfb0UeVRakqK8UbSdMv7DhXqimULfBIxpl3aFw29yNxIotiJBepbFevqFMkGkFIbtImEoEuSxppbC073GhUmR3xuWURRC+lai2+S+EKJGO5fCJELGLstS/YZRC1tsFUSdXuNPI46XJ23bjSZJQp2VZW+ySRUecx4nPUuUnzydXrSjD4c1M2otRitnC/wChn7ezKyfE+aUPgzVSjbk3GKSit+HzXsajPXx8pnTyN1Sb4GpJFcPypPmh5J8nfj48fX0E3fJbFSkt2UPuvgKnNcGtZpsiorSHpy3YrVImxViiq3AqTKnJg3AvbK5PcVOkH7kwLYVyGkB7CQRugJkbQK3KGChQphDk8i2FMuBqT5B2IlhtksNr78q3YPmJAbA4Js8z1BKVvYVui1pLZDLT5Ms6UdgKW0/SwLHLmvB1odEn8l5syeOEVvKWyPP9d+Pvhv4bx5MOLJj12uSXbFRl2p+b29C+NZ82bV9Oy6jM5LHaS3KNY9H0zTfM1mqhi7Y32JOUmv5HiOufHnVOsKa08cOlhK77Yu2rPKSjLLkc805ZJvbuk3/c1OKXuPc9Q+LMOeEloqcHGk5Yzh6nrWozydSUU41sjm49sdCvZmvFjz1qhqJv8zsTNPusrUkkV5Ju9iYWjCdy7S7JiqFoxuTg78mxZ1PDTW9FjNYHak9yO6JJ7kNRKC9wPkerA0aQlDKO5KGRZGbUqgvjYj5IaiVKYs/A+5XPl/Ynacu10PRajV5VDCrbfLkkl/E6v4HUabUxeRJeVUrtE6FCen0MM0U1KS9f1R0MuX5uVSldrY49O/E/rq6SbcIvdepsjTexh0TTxpUb4UjnXoh1FEcBobqizs2X3MukVKPihox3LO3cCQUVEfsYYosUb4Aq7QOBdVcgavggRRrawqLLEkWRxp0BXjg2y9RSYyhtaGhF3ZNAolUyxpXyK1vuBTJW3uUzjV2zU2rKnvL2NI5OXE+5s4/xb2f+mssHJfMlKPanHblc7Hp9XhSxSndJbtnjvjHHLJ0mE4vvhauNe/O69LNcsdX08ClVbVsWrcSPO63ZbDFKX2O/Hx5aKcFvIsjLFJ1sUZIdraK4VGW5qMt/4WWRWlsZcsO3ajYup9mLsilxRjyZfmWxcFD5Fb3I7sBEEIFwE0JZLJsTYqaDV8EphIjIlMnkLYLCoxkLYyCIwWNaZKQV96clY9Nx2TpL0Jj08ss/y37eovxB8UdG+DNI56lx1OvUko4ISjz5T3s88mvResdLRdKz6j61idR5ctl/E5Hxh8Y9O+EdA4aXUYNR1LIqjj2fb/BnyPq3xr17rWty55aqekw5J9ywYmnXHk4k5TzZfm5ZfMy/9cuTc5cr1XW6r8Xdf63kyvU6+WPDkr/JxqK/ioo4kcUYN1FN3dss7He/8wpG/Cs3o2NUgU+66Gi62DtZrGdNGVIDe5AWTpqD3bCSYXwI2c2xdMCb4F3ImajKNOx4rbcRvc6eHSwz6RyUqo1EqnDp++NpWU58Tx8qjVp8qwy7WUa7UKTpI1/EY73HT2K0WIkZokJQTcQW9hcK788ItPeSXAJvY6Xw1pPxnX9PjbpJOVepjq7W+Y9hhw9mgwQrtUYLYRQTao6WXGkpRTtLZfoY8UEpOzl1Xo4jVpo9qRthLZGbEr4Llskc67SNWN2zQtzLhkbIfcy2btQOz2LoxdWMokVUobbDwVItUQqFBFfbaAouy9R2CoWwKoQ35NEYrwRQa9B4oCU0gV4HaArRAiTX2BPbyNORVJ+bAR/coyycb3LsmSME3svU5mo1kcsu2DfNGkYusyzT0soRyyV+iX9jwPV9XrZY1hyZZvFt9LSXH6H05aeOoxds5JX5PDfHXT3op4HGcckJSrbZ8f8Ak1y5d15TFT3ZrhmjGLMCXamRN+p6PzeWrsuTubKGg7gZuxnQCnSAEmLqXsCiUQuIAaIFBLUSC4g3Qe7wArIFihRYAgZMQSWQgBUhrFSG2GNPuvxf8U6b4O6DOEVjydUzSWPHjk2uxOt9l/U+E59RqNZq8ut1mWeTUZZOTnKTbT/c09Y6ln6513VdS1U5ZJTm+zu4UfGxkUbRyk/katNG3/5DW5I7BO0kY0NyIhLKg8AsDZCUHuBbIBvczWoN7hq2BU6Luz6bozi6paA0WS2ZW9yKWStbF+HNLFjcb5KLDyiz0lWSyXv5GjjjlW73Ke1slSi7V2WaiSwuMvYZbFqyd0alyVvk1GagGEl0ikJLg9Z8BaPFLX5tdNy/yoOKVbI8mz6B/h/iw5ukaiHzP82c5fT7KjnXXnm11ckP8x7tmbLhp2rTOllxdmSt3Tp+wHBOLrk516JGfS0opN72aJR2Oe1OGXdvY6WPJHJiVOzm6QuOXa9zdjlaRzpJqSNeF8bkadDG36+S2Kvcox328miLsirF9wte4q5LPACb+oy2YLDs9whlzyOqXkCqrClsBG9+QP8AQNbXYvZJ735ArldleSUYptvb1LMtxUqabOLrIa3UZJQx7JU/q2in7g0mp1qyZPkxalbpJcs6PSOkXn/EZu2X/TGk/Q06Lp2j6fghrNZOHfspTmml+i8nE+Iv8RtL0xvT9JxZJZW/+Y0vQ1OWbtep6jh0eh0qz6uePDTX0u1fHofIvjjruHqetxYtMofKxNLuTvjz9/T/AHWHqnxB1brUpT1upl2vjGuEcScEtlVefc6SOXfqETuPi/YnCAmkw8nbmPLUAEBtmoSgk8BQAEhEgBQAgFgBYS4ajVgoIGRQCRILToIAQBRAUQhKYXCqCpKKSj7Kh6dcBi6XAbtE4haC5IQFm0RgDYAAyEYSYiAfIQCxdDdUdHRQ+d9D9DBWxZptXPTZU09q32MNRo1ukeGV+DFVHZz58epwJpvuo5bjuTF1VVkp+Czs3LIpR54NSJqmLcfBJzTXBfkcK2MzW5fFEQQBLEEVsjBuFBptm/pvVdX0jPHUaSSUo39LSp/7pGHyWxh3Lc5du35yvoPSfjjRdU7MfUsM8OdX9cKS/wC56HHp46iKlppfMtJ7bs+PfJuSN+i6v1TpmSMtHrMmJqSf33Odr1c/Pb6e9C5JqS3fmjkfMy6XUODuKukmjm9P/wARNVpVF6/H+Jbf1fRxxxvydN/FPQ+p6dZe6WLN5jOKTX62Zxc/6aYZVl3Ts2YHx7nK0Ot6dmS/99ijLu7e1s72lh0+b/8AuGmvu7a7+TKr8T2L4Mvw6LDkl249Vp5tOv8AmL+5tj01tJxlilbq1NVfoXE1z1wNbfk6a6Xkp/SqXNSRP+HPw8fv9a/uPGnk5dP/AGhlwzpT6fCDXfn00O7juzRV/wARfwemVKeu0Ud63zx/uXwqecYYpvgsimlumXy1PSNHCT1HU9IlF/V25Iyr+PscjWfG/wALaOf1aueTf/RCL8P0kvRDxN/8dL5Mv3G1Wow9N0/zs7VRfFrfa/6Hj9d/irpINrpeK+3JtKWDlf8A7s8h1X4y6v1mUo55wjictlFNbb+/uTFk329Pn+NsMuodksLjp+6k1vW/ND9Q/wAR9J06P/03RLNm7lUpx49a3r3Pnsu7JHdtNlccVehZMbzZ8bupdd6h1zLKerkoxcu5Qikkv2MPyrd1V7l2OKSqgyrwaan55PaqSUY7GPI7kzXldRMM3cmdOHm/eyQCeSAb3O0eLTEFVhKlQgAkAYBgUAEElEBUonCJRHwBAB5IBEHlAJZAaI0SwmVRBBYLAe1QCLiwM1yiMXcJCiACSwAFEIACEIAUK4ptBIzNmkpoycVs2Dvd7gATxXViybEc78lbRPBQbsgAo0ggDsQAeADeANEWJFWzTBbFEOdjRHgx09P5CthnvWwFyHwcrHqzS/LtEWNLjlcDrgJlfFS8btbtU+U6IlKHE5ppbOM36mhccBpehDwqqGp1mHbDrNTB3yssv355LsXVur4ZqUepap1K0nmnV3y9+SKvQNL0Gng0Q+JOv44VHqupr0+bLzz5KP8Ai3V5STfUtV+Zy2yz58eRaXoMoqh7X/NM+r6hqYxU9bqElbSWWXr62Utaif8AzNXqZPm3nm3/ADL0GmX2v+UZvlZH/wDlzP75ZO/4+43yO5fUm2/Lb/v9zQm0hlLbcNT84zx06u3yWrGkFNthLjU5kR16Ar2CluR8kXAFocWTosL8Z8/5TC/zGzPK0Y3uzrw+d/yEsBKCjrHkFIjRLBZRCeCEIVCBABCeSE8gQHkJAiAIyBYhAohDUJ4IB2QS6AQgaWsVkbAaZEHkZcAsAAYQPkAJ7E3CuA7EAVhDdAsCEohAgE2J5JW4AfJBqAFCghAUQi5CFJeWwIBhQHyS/Ce6bGqZfEqgi1NWceq9v5QyGAqZGjLuYgESyNQyY1iLcZLYzW4ZBAhluGvQLkamDyNapBdidoaJaJ3BRSG7RVNIHeioZRDSK3k9wd/kumreAN0VKbbfoVyyU6bJS2Ro7irI+StZqrdb8All7434HLHXcxRlkUeR8krkIzvxHzP162oyEolHRxQhCFEIQlMgDJuNRKYNhSDdrJ2sqUu4UHtYe1+gw0tEphadgUWxghKD2MKhsTDS8BSsLSGikTFVtNMBc+31F+n1FCPkFbhJQiBZLDQGFgWQiRAJYQeQgwSABe4BJYrbB3MBwiKTrgZMIIAvkBVEgAgQJEiMqA2C0FiNbk6an1og1SLFRZ03Rx1Slc0mvUScOzK4Lw6OHT2fnTR2YWRBaMPQCAM1sKRqYKsa2SFNDduxGkW4UUyydroeE7CSrANDXWwLDehv6gb9xtijNkUWEtxYnfkdIoi5JJ9rp8F0HcdwIwLfYLVkiqKQ3a0rMuXtlkUZOle9Gru5RmyRt3f8DNTv47nVOmaLB0rDl0uZPLa7n33tu+Dz8047N8bFkHP5bgn9PoVZNi8y68/6eopZCXsQ9UeHq7RIAO5pmowcBA+SoiY1iJOw+AlhlP2B3gRKGkg94PmteCUCie1uD81+gXl9haA0PaejLJvwN8z0RWkEvtMM8jfgHcwUQLkB2S36kdg45Jqo2/UFsnJKZgWEsBDYlgu2QlOxgNEoZcAYA2J4AQgnKIkEgEYu41MFARIKW5AoIPgFbBA+CqhABKhkAFhCgxGr2GZFyS+yLNPknh7lGTVosj3OTb3bZVFF8Nzj1zXq/G6dWN7EUaD4OdseyT0GGHzs8MSdOTo19Q6c9Io9srTW79zFjbxZ45VzF2jVquoZdXFRyPj2Ic/FEKUedyzb1KYosa+mg3PjX03p2m12o7c00qV1srE6jo4aTVqGN3Gr3MkHLHNSi6afJZOc80++cnJvywTMRJfqQItEWQUIowWZSmu6KabQ62Fkkxi2Ozr+o6TN0+OLBGLl6KNUcmFUVwh2stWwkIjFsLF8FQRe1sHcNGVA/hX9CMuZ2zRmn9Jjk22b4jyfvfQEIkGj0R4URGRAfIRCEIUFE8ERLIgB3ImGygUB8jWSwFolDWK+QoUSgkCQCECRQA1YathUfUYFSoI9InaQIEgSgUSgkKagGH9QEQKJQSBUQGEDCUQBICoRECgJwBkZAqBATwBPJCJEKIwJBDGiBkWQluV8D41b9zHbt+N9tMWFixG5VHnr6HN9Ek0kLUkk3FpP2LcHZHUweVvsv6uf7nb6pm0+Xp0Y4uxu9muaGNTnY4UZJosVUVIaLcpKK3b8BTNbjbUVTbjPtez5LIy2CxPsDyEjdUDUA0xrI+AoILYEDkGo3YYY55X2w3foI15H0uslpcqkop7hm9ZSTwzxupppkhG0X59Q9RkcqoTuUYmpDr1GTNtsZy7LLukyp8nXmPnft1tQhPQh0edABsllAIQADJqgMhK2Am5LZCACw7kpECVLITYOwUCEZCmIQKWxCBbph3ZH9gkRFY1MCaD3EUhCELEEDIBlUUH9SEADIRk8ERABABCEIUEF7kB5IpiAQSgoBPBACS9gECANEC5GSGFM3sIsklPYerpCfkyKXlGe/jX59e3RzafNiwQyOLSasqg2+TTPq2TU6eGGUVsqbozpUzzdTH0vzoyx207S9SyLago+Adyqgd6Rm13mQXv4LdBlxabXwy5bcV4SsqTsDSuxpW7qeq0muywlhi4tKm2qsyqKSKlCnaLEykCe0TRoelarXxlKEPoW3c/Uy5F3RdGrp/VtVoIuEclx8JpVx9gW5fap45YsjxzVOLpoSW2zGlnyZcjyTdye7K5S2CWmTVOypzSfNL3Dgy4/xMI5mlBvds6vV9HosOjxzwSgsnpB33IjO+nNVS4YHjRTjnXJd3WtinN36FduxXknsyxmfK+S8sfp1kUt2KybkPRzHzu+toxk4tP38hlLuk3t+gpDbFQgQBEIQhACXsGg0FAlkpEpFEIGieQlCtwkAFS9yEogBIQlgQAWAJRIQFoijQGmMmAJAoNEJ4KoEIQIhCeSMKhCEImIQhAYBA3sAKgUAISoEBCqgGwgfJNMRbsdiRTssLENjruXc6V77BlTboVD1sWzVnqjjpbl8dzPFl0HsefuPf8Ah3/DSaRpxdM1WbD+IhjcoeN16X/QyTi57JmrS9X1el034eGT6Vxtx/uzlMej7VPY4unsGgKbm23yxuC2NwV9wS2FlLwuQ/IyvC8r/Kt27MkvsFIlICGQX1QoDW4wNwXFWTF3U/TwCClPtxt1G9i9VRXKO+2xKx4f109doNPg0MMmOTeRc77M5qtIaMptJSk3FeGK/pTNSaWeglOkZck7k0WzkZ3u7OnPLx/t3npKIBOiHePJiMhGQqCBsDAA1kAkGglSw2AhFQiIQAgCAohCBXIEIQKKBdEqyNB4IA0AL3AwJ4ABgM2q/9k=
Ε-mail: kontoni (at) uop (dot) gr
Phone: 2610-369-031
Short CV

SHORT CV: 

University of the Peloponnese

School of Engineering

Department of Civil Engineering

1 M. Alexandrou Str., Koukouli, GR-26334 Patras, Greece.

Website: https://www.uop.gr/en https://civil.uop.gr/en 

 

Dr. Denise-Penelope N. Kontoni

Associate Professor

Departmental Erasmus+ Coordinator

E-mail: kontoni@uop.gr 

Skype: kontonid 

https://www.uop.gr/en/staff-memberen/kontoni 

https://civil.uop.gr/en/staff-memberen/kontoni

https://eclass.uop.gr/modules/document/?course=CIVIL110

https://gr.linkedin.com/in/denise-penelope-kontoni-b2906919

https://www.researchgate.net/profile/Denise_Penelope_Kontoni

https://orcid.org/0000-0003-4844-1094

https://www.scopus.com/authid/detail.uri?authorId=36965453100

https://scholar.google.com/citations?user=BZcMZJsAAAAJ&hl=el

 

SHORT CV


Assoc. Professor Dr. Denise-Penelope N. Kontoni was born in Greece and has Greek nationality.

[Full name in Greek: Διονυσία-Πηνελόπη  Ν. Κοντονή (Dionysia-Pinelopi N. Kontoni), Father’s first-name initial: N.]

She received her Diploma in Civil Engineering from the University of Patras, Greece (Grade of Diploma: excellent, ranked 1st).

She received her Ph.D. in Structural Dynamics (Doctor of Civil Engineering) from the University of Patras, Greece (Grade: excellent, Ph.D. Thesis Title: “Dynamic Elastoplastic Analysis by the Boundary Element Method”).

From 21-10-1998 she was an Assistant Professor, and from 01-03-2002 until 06-05-2019 she was an Associate Professor  in the Department of Civil Engineering of the Technological Educational Institute of Western Greece, Greece. She has also served as Head of this Department.

Since 07-05-2019, she is an Associate Professor in the Department of Civil Engineering of the “University of the Peloponnese”, Greece, specializing in: Structural Dynamics & Earthquake Engineering, Finite Element Method (FEM), Boundary Element Method (BEM), Computer-Aided Structural Analysis, and Computer Programming and Computational Applications in Civil Engineering. She is also the Departmental Erasmus+ Coordinator. 

She has also been teaching for 21 years in the Postgraduate Programs of the Hellenic Open University, Greece, where she has also been supervising M.Sc. Theses. She has successfully supervised many M.Sc. Theses in the Postgraduate Programs: “Earthquake Engineering and Earthquake Resistant Structures”, “Engineering Construction Management”, etc. 

She has also been teaching for 3 years in the Postgraduate Program entitled “Protection of Structures from Natural Hazards” of the Department of Civil Engineering of the University of Peloponnese. 

She has also been a member of many M.Sc. and Ph.D. advisory and examining committees. She supervises Doctoral Dissertations (Ph.D. Theses) in the Department of Civil Engineering.

She is the author of two-hundred (200) Scientific Articles in refereed International Scientific Journals and in the Proceedings of International Conferences as well as in Chapters of International Books, which have received more than 1110 Citations (Google Scholar).

She was the principal investigator of a funded research project and a member of research groups for other research projects.

She is a reviewer in many international scientific journals (e.g., “Certificate of Outstanding Contribution in Reviewing” from “Engineering Structures” - Elsevier), and she has also been a member of the Scientific Committee of many International Conferences. She is editor and guest editor in refereed international scientific journals.

Her research interests are focused on: Dynamic Analysis of Structures / Structural Dynamics, Earthquake Engineering, Finite Element Method (FEM), Boundary Element Method (BEM), Soil-Structure Interaction, Structural Vibration Control, Computer-aided Structural Analysis, Elastodynamics, Elastoplasticity, Applications of Artificial Intelligence in Civil Engineering, Computer Programming in Civil Engineering Applications, etc.

Foreign Languages: Greek (native speaker), English (fluent), German (very good), Persian (basic), Arabic (elementary). 

She teaches the following courses:

Undergraduate Courses: 

  • Computer Programming and Computational Applications in Civil Engineering I (Lectures – 3rd Semester). 
  • Computer Programming and Computational Applications in Civil Engineering II (Lectures – 4th Semester). 
  • Dynamic Analysis of Structures (Lectures – 6th Semester). 
  • Computer–Aided Structural Analysis (Lectures – 7th Semester). 
  • Advanced Topics in Finite Elements and Boundary Elements (Lectures – 10th Semester). 

Postgraduate Courses:

  • Structural Analysis with Modern Methods (Lectures). 
  • Simulation and Dynamic Analysis of Structures with the Finite Element Method (Lectures). 
Scientific Interest:
  • Static Analysis of Structures.
  • Dynamic Analysis of Structures / Structural Dynamics.
  • Earthquake Engineering.
  • Computational Methods of Structural Analysis.
  • Boundary Element Method (BEM).
  • Finite Element Method (FEM).
  • Computer-Aided Structural Analysis.
  • Soil-Structure Interaction.
  • Vibration Control of Structures.
  • Mitigation of the Dynamic Response of Structures using Seismic Isolation and Tuned Mass Dampers. 
  • Computational Methods in Structural Mechanics.
  • Analysis of Structural and Geotechnical Structures.
  • Reinforced Concrete Structures.
  • Structures with masonry infills.
  • Steel Structures.
  • Computational Methods in Mechanics of Materials.
  • Elastodynamics. 
  • Elastoplasticity.
  • Informatics and Computing Applications in Civil Engineering.
  • Applications of Artificial Intelligence in Civil Engineering.
  • Soft Computing Techniques.
  • Computer Programming in Civil Engineering Applications
  • Sustainability of Building Materials and Structures.
  • Building Information Modeling (BIM).