GRIVA KRINA
ASSISTANT PROFESSOR (Tenure track)
/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAAA8AAD/4QMdaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA1LjYtYzEzOCA3OS4xNTk4MjQsIDIwMTYvMDkvMTQtMDE6MDk6MDEgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOnhtcE1NPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vIiB4bWxuczpzdFJlZj0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL3NUeXBlL1Jlc291cmNlUmVmIyIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bXBNTTpEb2N1bWVudElEPSJ4bXAuZGlkOjhCOTFFRUFERkMzNDExRTdBQzY5RUM2QjUxMDA2NUUyIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOjhCOTFFRUFDRkMzNDExRTdBQzY5RUM2QjUxMDA2NUUyIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE3IFdpbmRvd3MiPiA8eG1wTU06RGVyaXZlZEZyb20gc3RSZWY6aW5zdGFuY2VJRD0iOTg2Qzc0ODdFODczNTU4NEFFRUZFRjZDMDkzNkIzQjYiIHN0UmVmOmRvY3VtZW50SUQ9Ijk4NkM3NDg3RTg3MzU1ODRBRUVGRUY2QzA5MzZCM0I2Ii8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgArgDIAwERAAIRAQMRAf/EAJUAAAAHAQEBAAAAAAAAAAAAAAACAwQFBgcIAQkBAAMBAQEAAAAAAAAAAAAAAAABAgMEBRAAAgEDAwEGAwYDBgUFAAAAAQIDABEEIRIFMUFRYSITBnEyB4GRoUIjFLHBUtFicjMkCOGCwnMVQ1OjJRYRAQEAAgICAgIDAAMBAAAAAAABEQIhAzESQQRRE2EiMnGBoVL/2gAMAwEAAhEDEQA/ALd7D9tD3Bz6K7N+1xWGRmk6q0YPkjv/AFO41/u16ff2eurg6evNb3XmO8KAFACgBQAoAUAKAFACgBQAoBGfNxcdlWaUIzmyg9T29lGCyVR0dQyMGU9CDcfhQb2gBQAoAUAKAj/ceEM72/yeERcZWJPCR/3I2X+dOeQ+dOQpUbT8ygA/EaGuqsTeE2lse0VNFTvFN5RUMN0hl/52naAfwqaiO3/Yntn/AMBwEWPMAc+f9bNcW/zCNEv3ItlFHb2e22Xb16esWKs1hQAoAUAKAFACgBQAoBLJysbFgafJlWGFNWkchVH2mgIfP9140S2w4WymdbxTG8eMx629azD7hajMOa1U5/ekk7t+55JcKfzBMKOVFLsLi0bkMmnaGIJ8Ki7tJoqed9WZuOlGHlYkE7EXGTdt7i53IxJuDfu0pzNFkTPA/UXj+QyI8riP/r3uByOA5uigDzMwOgXtDJr2VrrIx2yvvIe7cbExsTaomy8xzHGinyjau53J67QCNBqelF05TrtmI7hvqb7d5DKXDfJjjyCXDNcrHdTptZtDcfcdKitfVbIcrHnG6GRZFB2kqQRcdmlCSlACgAQCCDqDoRQHzp9y4bYXOcjhMLNj5ORCR/25WX+VdbJDRm0yeOhqaVTHFNrbu/hUVjul8oXaNv7o/A1NZx9AKzegFACgBQAoAUAy5HmeM46NXzJ1jDnbGurMx7lVbs32CnilmKtkfUvHecwYWKS4JC+qfO1uwRR72F+zcR8K6Z9TfGbxGF+zr4nJ2nP+4MmYLHimJWFrAJde0t5mJP3VO3XpPnKpvvfEe5Wfy8mDI0GasOZCpTbKUQM51AYFG17VK/dWNurSTb5ZxzHur3Jx8k8nLTYvIxMtnQygFG0WRYfKF2sOnQg6is7tnw1muGbcl9SeXxgcZMueTDBuiyyeaK/UKBo6/b46GiaZV74VLkPd+ZLIBK5J726nu3HrfuNVOse5rkc1NkQbHcs17wynw/KL91VhNpTiudmSaN9zAghTftIpiL3l+4+RmWJjkFcgWjj8zXCsNfKNANeyo9uT9EFyfPwGbGSIelDixmJEViSSx1JPeTrVwrGm/T/3vzeHHI/rWx5WVSki70QAWF+jbto01trrU3YfrbVwfuXA5LFgIlUZTgCSEG+1tdL+NtKSExQAoDgz61YP7L6p+5YNu1TnvKo6aTqsv/XXTr4ZXyoN7SIe5qAluMNnI7L1FZbxN5GsUZHiKmsY+gFZvQCgBQAoBPIyIseFpZGCoouSTagMh+ov1HyZfbvMRcOWSGOLa+ff0yrFh5t1xsXutc1PXvbtPwvbSTXnyyT2tzPv7P4F+Qy/cuLloHaKHB5ANleolgW/VsCoZraKfjXVe/1vHll+mbTlP8b7xj453kkx8eCVGtvjkdgW6NtuWJN9FUUuzu22nk9OrWJ2P6jRAyJGmS+8GQrjen6x7TuSQgADrYOK58Vpwgfcnv8A9yxok23KeAo0kWRJB6bCPtEgDSaA9tH6x7M8zPf0uXLIOTL5UDj9Mg2lNxYfqrpZe5lJrSdaPZVsqXDP6mOXZt28qbKQAbnyA2bdVyC0ykmdmZifK1208de3+FMQrEs72udFHlP8qmqwXxpFVixJDEjTvPfU04sLc4I4XUkJIyWS2twfzE/yqJGlqDjzDLLu+VOiDt/xVeEL7wWfkT40cUQHpRFQVBtcDt6istpyvK+4/uuUYeNHJkDD4/EyA8ggUvIxHaCnb2amjW2VO0y3P2fys3JcJFPNA+O4JULI4dmTqjkjpuU3sausk1SDi3/c/i+h9W89wLDIxsOb4n0zGT/8ddGn+We3lj0hsT4GmSU49v1tO21RWWywOb4oNujfxFTWDv8ArN6IUAKAFAUj6kcjK0EPFQNsac3nbSyp01v2a1O34PTzljn1K9y8Vh+0JeFxkBAVbSAC0jK28sSbE3HcK10szJE7a7Xmsl4j3By2XxqQnKMCYYggimtZFikL+Ur0uSL9L1d1mVS8L5FD+2gCJiLNmMxZ81l8zAiwESMV2IB1cG9KUrEFlZxxIyTlR4O8n1BYqGuem8n1CD8KVhyqhyUaZcm9ZVlsbeVXCgn/ABksT8Kc4FuUdPiaIoWzLfe/aR3nut0qspwMmJrsbW3Q/HuqfY/U4TAU3ve1tL99K7NJqkcXj0MkbbtoYhSt/m1AqLsualOR4hly/IAQll3KLXHfbvHb30TYXQccUQu10DeUMh779v8AwpZXNYI/ChgGQWHQi/Q/2U8ldIXgnmwsVo3hDoTYPdlK36m4pWJvCZ4XPVUVU9VXupDli+1h06m1P1Rdm7/SSLKlkaXKyb47ETRuJGBldSVIa4A23Oqjtq5rcZY77zw18Vmpyd/u/wAIQ+8eIy1XaMzjysj97Y8xsPsEtdHV/lnt5c+zdT461RH2C/nXxFZ1nssqndiN4bamuf5fQCs3ohQAJtQDDM5fHxvmN7HaxXzWa17Ed9XNKzvZzhlXvbmMf9xLKQuRnZEYSOK5AjU6sXv2AdfwrLbituvOHPvvrlEnbJSVzPlvf9UaIoQfKq9Bp2Cr6py034gv0343JxMVuZ/bfunkKnAiYbo1lS/60tgwVQCQCe01tswe87zPvHkZJo8icwKTc4yn0wB8R8wH+KlNQrkfHenKJMqdppD+QE2Ud9zrr4VQycTTCCNUUASv8sY0Ea/2mpokEWNmYDqAbk95qauQusa36WJ7amqKBUVRp40sLhSGVY5A/Sx1HdSwrKSbNhLsddD5bnqOyiQZKvlY3oxsoCyJcG2ul7iqwMixZMYbb1BPaP51UibskIY8ScFSAQ+jKehp+qNtsGg4+Tjcv0VN8eTz4hPaAfNESe1ezwpzVla1n6L8+0fLDDkgkfHyGEa7NRHOB1ZT3LVzOLIw7ZLMt+31hhXu5w/3ipivhe2JQynKjlyY3QG7CKRFYMR2DdHpW3VLilNs1zBJr91OrOsJtYifh91RUbLRjEtjuP7v8Kmua+X0A3Cs3fl4XtTwV2Fk1FOI3qhe6M6bHycrILxxwxsY1iYXJJteQHw661W1xMjqmeGP+9eZk9N5Y2a7Kd7MBZVOq2/jXPJnl2yYYyYpOT5EwxgvNIDsxxZXbxjY+W/gevSunrmGXY0XE9p5nF8QI5ctscTQiV8GKb0MmIMNYkhchWdb3ZQ1j3XvT9s1nfCjZ80yylXnYxoSFvcn469Psq05N/WhCblSy/1HT7lpA0iJyJzKdQT/ADqLWuqTVep7zrUKgxGtwaDJuxJ+FIyZcjppbsHSgQVJHJNzoOlOGcJK9ut1qiKRvJoaZVLcfMwYA/fVxOywftxnYTY7m0ikPA/aHHT+yqwwrQfor6Q5KWacbTCyqLdkpB8zDrZhp8arWZlc3dcNR95++cX23iRiNP3fLZh2cfx6/NIxNtzW12An7egqNOr2v8JnYxD67ezuTx/pm/uLnZjle45+SxnyjcFIIZA6LCltNCwuRp2Dx198/wBZ/k+v/X8uan7D8ayrqK4baL3hqmp2Wrjjujt3g/wqHLt5d/BxSw6fcA1BexOWXajMBuYDyinIjbdlf1NKx81hCcgRvj2N/luGJF/jcCp7ZnDf6txKxr33kbYpcdAFUHaATdjc+Zj4f01GMOmbZZ3xE/CDmEg5nIfFwJnAfKRS3prqG37fNtIPYDtOtbzwitA934eVFviHJRcnxRjU48gZ50eIqCrgHVS3Xreloz2rP5Ujha6IxYi1mP4AVoRuElb1HkbdIQAewAnoBSsOHmFEFS33GosXKefktUtII+l70jIljqba9lIhDr3eNBjoq311B0tTBZAgU9w/hVwg3bGPbrQSQwcqMOqnQnS/jVSixaOOl3hShHwvWkYbLf7M5yHheRyp3gkyJplT9rjxKWLz7rBWA12kHs7RVa5YdjTvantzKjzp/cHNsuT7glZkta640fYi6fPY2Ld2g7bva8Y+HLtceEb9dcRs76Se5EYBnhx1yU1HXHlV9B8BUycjqtm0cSSdvxqK9B7jH5h3EGpqdlp4p/Kp7v51Lm3d9ki1zTRmPNwvbqaMF7GfKZ8GJBvmcRLqdzHTy608yc1pppdriMc95czh8gqSzODlENEQN0vlDbo3j12g376zu82duvXdGM87NlTtJLJdzYIO7yX0HwqJXReGfcmCMggENt0uNRfqbVtqyqzY2BFk8ekuFnhFQE5GOSbrIR5mH9V/GtWVprImNjJv2lrHRm0vbuH8amnDjEhkfjjI4N5pLjvta5/Cqk4TduRoyL3GiDQA9Se6oq5S0Tbtw00rKt9RZL3J+6pVYbzOqRl2Nh3npVyItRknLooAGrDqR0NPBexJeaN7hD40YHuewckHHQgHrU1c5PlcPr2kdKMngxy8yeM2jOo6EURG1I4vMc3vBjLgDUbdNfjWs2ZXXLVfpF7sz5vePF4+dH/qnZo4JelyUOht26da00stY9uv9XSK5BLNMjhV2KGXUnw/GtvWOGoz3ZxqZ3tjm8ZkAE/H5SH4mBiOp76d24TNf7SuClJaJWPUqp/CubZ6Y0J87DvF6ilVk4h7qKlzdnl3yJHvYsqP02jU1rY5ZkEmBZwTezWJ+PQUvVWKhfc8UeTiiNo/UhJAkFt1rnRrfHu6U/T8unq3xGa87iYXHvDkhUSMEuG2hY1cHzBiQPmXSwrLaSOrXa1kHuWJ1AkC7Fd22RnrtuTqP5Vlnl0a+GacgB6jBQeup8L1tEUrxnKNBG0e1dyt5HCXkN9bbulvjWkrKxICOXIZXybu17EE3/5RTwnKyzJHi8Ym4dfLpp5n1Yj4Cwqs4iPNQ7vtF2Fj0Rf6R3Dx76w2rfWF4dFB0FxbSs63g3lFyTZR1pwrUPmGbMIiiG2BT8x7TVWpxaR/YYMJ/WffJ3f8KnNP1hRYuOuCLC/W97Us08Q5SKBNAAO21KrhzAVDqKmHTHlZxizuhF2Hyr8db3rXDG0wx+VyWmVIwBcgaaDXp11pzRN3wvnsPl1xfdXDvyCmN8XLjlEmhAW+1iGFuw9oq5cVFntHVsblWlF1Vd/Ydwv2dPy109e82mXD2dfrcFYwkz+gxBWcNE7gCxB8rC3QaNV7eGLgXlcRsPks3CYbWxp5oLd3pSMn/TXNv5ehreDSI/rDxBFZ06sHDvoPuqXP2O85DKq79p3DU+YAWHXxrqmHLrOUceRRJPUuShN5Rb5TawNL25w6J18cD5BkeI7tUYaE3IHdoOlX7aJmm8qle4+IwIYf3QiDTFt8M0lyoBuLWYmw/Gubt9fh19V2+WKe8spZWkn1Ab9OEdygWvp2tXM69WcZsLQPeSGORZCVBuT0F7GxBBrWJtR3HxvJySCOFnQt5kQnS/Q7j/OtYy2W/C49VO8epLPb5pFCLGO0KoJPxJrRlaLyWWZJ1RT+hCAkd+rMPme3Z4VG1PWGce6WS56X0NY7OjU9VGA69KlYTRqwsTYdvjRkGmU4giIjGp7uvwFLJq/kPO0pHyqDqNRp4HtNayRlbTpRiHDjIU+vbzdml+po2wWkuREmZUte2vlF7m1RhtdkjiMzG/d1pYGTrl+NXkMD93GD+4xRadR1aLsb/l7a0nKLMIHGx4w63Ugggg69lGaPSLt7dOI9kkLGQHcsv5gCLHs6a05U7a48OmPaHKrynt+Ce7tlovpZRU+UMgAUj/lHWr02sc/ZpKmI8l0KH0kd9CoDGzX1XU6E6V1S5ce2uHGX1Xwxh/Ur3JAEKIc+WRFOllmAk/665+yYrr6rnWKghtIh8bVlV1OcQ3m+BqGHY7u/V89xdexlGvwtXocOXk0fHSSdC7FJzqj2sGA67h08DWHf1y+OK6+jss88w35HlxhK8cXqB9SscCmRdfA62tXne2+cWO+aaXmVnPuj3DyWdjnEgxJyu79RnQ7mN9OvT4dKV2VNGde5eIzxiytlRBAoDKNwMmvTUafZRNlYZ1LJHJKRNqoG0eIA6fzronhlYPiRxcd6kuOBP6nyhifJ8bdTTu1PXWHj8jNJt9RzGp0aIHyG/wCNVpvc8p265jghLE1+t79LaXq6xhTF1cW1+FZ1rqlFjJUW6Hvqa1Jyw9321NhGGVA2jXNx/CiCGzSbT54wx7CKaoazyFjZUA+FOFaSixGaQO1Fo9UlFGqLa9I7EjgZLY06S6HsYdQVOhBHbeqnBYzMH2fxXHL6eRCNsE99n91gLlT/ACrWyMuc4Fx4o4pUZTZh+b40lyNo+k3O+jk5GG+sGVErsALkOh2kr9hFYfY2xiwdestsaBnZUikqFiliJDo6qWFrWJ0PVa7/AK203ns837Ou2m2HK319wZF+peXMqlY83GxZ0LCw1i2sfgPTvel3+V9F/qzaVlMjMui7vL8BXO3SvFtaX7b1LLfw71Mp9RA1jZrsQRdT3Gu7HDkVv3lzCcXhIdwLsTsj7STqCLd1qx7tuHT0a5qrcTyuRLwb58eU02SxvLEnzlgba3121xS31zLy77rPbFnBHlfcjnippWxycdQS0kbiRWJ023U2HfqK572ytv1YYv7o5aHLdikhEd9yxqd517yLCtdNS2VKCFp8ld4ZEBJ2t2aX18a3YYGlUxyPsPmc7tNAD0t9opLhwk8UkN3Fygs3Ze1JRvi5T5Exjf5SRYDsHdVe1R6w9x29LIKW6aj4Gi0RNQSAi3W9JT2UC3TwpUzSVLnXtpHIYz46liaMnIROOu4WFgPxp5GCUziIFuwVIguJDkZC+rusrageFVmQ7EkqBrLcdOzUUrsJDwSuvF5ETEbTsZb/ANatpbxpzbhNnMI40zg2PS9Kbquq7+0ub/ZSrNeI/wDprFM/ppIW6JuuLHTS9LsudUaT+zb+Ey4MzBUwuESJb5WJHZ2hX8yvbSwJ7PjWvT9nXxJhzd/19v8AVuYwv/ctGrcnxGRCrGObGljkd7qf0ZBtS3dZ7i9dHbLww6bOYw2UEFr9etYtUjxrWlXxAqay3d4zTxqjoLb/AMyGw6a30vrXoyOWqD9SHTJxsaKA7cpZScaPRXl3ebb5tLi1x39lcX2fDt+pOWd/vORxcJ5sVwyyof1gdpAv3W7DXnW8vUk+FEzvefK4uRLjwsyMdHbfe6jvsBuHxrWdcvNZ7b44QWRzubPJ5iDca6AfaTYVrNMM7sRyuSIVViseoLDtIqpGdR2RPKI7FwS2p2m/30xaUxsl5omQaSWsfGp2i9bkpE2RCvrCMgoQT4gdlBpfcH2Sj8wBB8DrSTT2DIKga0Gd+oHTU9f41K4KVDaDspZVDd0BvYadBSyqE2T7qMixH5kauCl9TTBrN6suKMVgyx3Fyhte3YacG3MOeNgjxrFFOnXXvp3lPhLS43qwFw1j1VOwWq7rMM88kcZ9wsfmGlYNpcpb1BHhIhCvIbzGFhcPEp2MLdvXT4U74RNv7Nc9nxT4uVj8vx/ISiGMxmTGVt6lToyk/m2joD2VlOra8q27dfH5Rf8AuUw8OXg+MzcPEWNv3csSvI5QRh4w1xc2a+3yg9K7831mXnySbXDm7JjkRVLOJAbgkXYAjxIHXrpSMrgN54z4W+6pqNo7czvdf7bJXH2kQFLJKQAN5/KGbUD4it+3s9U9XT7KL7/ycHMx/wBy2UZWjUqq+YrqOo3a3U1y9m+Z5dvVri+GSc17inRhEgVhsvJpZdpHzHX76y10y39sPeB9v8j7gkcRRSpAkTtLNJZFXYu6wvrr3X07ae1mqealOJg9p8Fy2I2S4c7JGyHyBujKtoySqRp5WAWw060rbt4Eknk39+eycTExpuT9vY37zhLes0akHIx1ZfNE4UgMinVGAp9fZ8Xyjs0xyyeXIXdeJSqf0vYn8K6GFoiSsGDA2YdKBlJ4WeflBsw1MbdPiKmxpNkicsjzPYA/hUyKtPIZN3UdKBDuNraHtpHCm7QkVFWTue376SpSU0gjUm+t9BQdpkSDr1J1pwngIB+W/fVC0ZZCGt08aaeUnx80dtkjadh61pKz2lNADHyTQg7lbVSO0VltOVdd4S0/qDk8NUJ2+gQ4H9JvcfbT24iNea0L6ZwyPiT8fd5ceJU8qkru9NvluAet7Vr0z2Y/YvrylvrfhnI+nOWseOi5GLLE4xULGQecq8oB3X2btLGunacOXS/2cuOb63v1Fc7pLYTWK+DWqajZ2bzWVO6B8qNXcWNmG026DcOvjpXT9iccMvr3NUr3dhXwTJlG662dFCDRdLD5bVw3qw79e3LMEzeMsyZMO/eVG+wuNbrtA62Pm61GK1taDwnIY3A+3okjhDvlxssvq6hnluSrC+nl101F/Co25qpxGT+9JXyuSmyhOW9cBxBLZZVJ+dbjySC/5ltp2VvpriMd7coXB9xZ2Gj4xkYwstgAx0X+k94qtuuXlM3xwhchkednUWDEm1tNfhVxnSQUk2oA01i9+lulBPN0rgBnJHYCaMHlO8Rn709Nz+pHofEdhqbFypyKS4BFRVwspJveorSPDp2/GkozylJ2k9AdaIRpLLPuIx1S40Ja9XEkGfku1V+OtqrhUFRM9tTYH/CackOxL8Xx6SsBlMzgj5RopPjWmt1Z7+DmPj2h5RAuse0en4C/SstvKdduK8nzZ5snLyIh/p4WEaya9QNqovibXqbMp1uGtfSvFzI4Z4vTUsI1aZyt3QN+VfMtjpftrp6MSufvlvhLe/8AC9b2N7jO7dI+G7KQxUgxEOpUHzG22uvbbMw5NdLLK5UnkeR3kdt7sbs57fGuOuwMZrMfAg1NKx29yeJNkyyGRb28nlWwjYjoxJ8a69pLHNpxWU+/eVkwuM/YzSSY6HcNpAPqbD5WBNvKelcG0vh6HXZeWZ8FlYknNYkM0gaN5GYoVHVQSp8PgNTS2lw1my3cvyEc6ssUQQqweaC4t6i9HVtddLqPGseWihe7WiWF3gyN/rODLjvEVZSO1SPKtz176167b5YbxUvUv1uK2wyeWv2/GmAuq/2X60EIWuSevhQMvVbzD8TQB4ZnhlV1NiOtI4sWBySuo76ixprUrFKpFZ2NJShb8alcIZVjGQB91ApqoAIJ+2nkoVV7Gw7elBlTPZfGgi2NkPqRq1tPjVRnss/Ae2uY56WLH4yH1ZNVeUh/TjuLncUV2vYEgAXqqy+V2h+is/HRwy8rlIIonb9niCMq0krWtM0W4+jCmu5pCXJHZoKXlXtFrb2pwXE4EZ43lHzMncHyJkjKICT8wJJPlOgrt+vbrxY4vsf25lE5HiMBeNmbMG5MuKaL1JGuUMqMilrn8xbSt/2W8Oe6Yxa4+aN4rxPo8fkcH+pDY/iK49nc8iNnPiKinXfC8Zsx/UdZf2TOwCyFVJZjpci7WFdV2l/5can/AFY9t+18b2zl85zEcU+RhQmDAxxIW3zym0e8C3lHUjwqJM1rrvZHJ6ZsfH8pFlR3d4H3hr6Bh2j4Gl2azw6NNqmeR93NnsMldiTm4Pp+QjUm1h2Ak2rmnU2vYrufymVlDbKAxHRu2wq5phndsmNjfrV4ILHsNGCefEA3ooE8t+6pAEEm4+NPAeg3+PbU0ziGVkNwdaSkrh8mRYMdeypsVNkvFmK4vfWs7GsozSIwOvhSMmtvCimNs62+ygC+mxN+vjVQ6dYkbbwbgX6sewDtpys92o/SL39xn7RuGikPHy5eSYo85WID63Be+i7hpfsFdevXMZcu+bOGkZ+RIZRDkTF4VbyykiVHdTclrasJB2dlXprPMjm33vz4Mcv3LFx2NIglbIjzJjaAR2Mzt8scMSnz/b0rT0nmo/ZfEQkTzzZsWZySxWgcNj8XGfVghc9Hcm/qy956KelXNWd3w5r92Ygw/dPL4o6Q5uQo+BcsP41x7+XbpcyIdDaQeNZ1dd+5HunPljYz48eLiuu1laKRpbnQGw0HhXTOqTxXJey2MI+t/uzK9wZmJ7VwGCw8V+tyGU4CKjsuxd1upC9nUmlvtNOfk9dsc1neH7Z4WMXXEkznJsciYEqSP6VHlFcG/btS27dr44LZ3tziJMW0eKIZ733AWsPsrKdu0vka9tQ+T9OufGLNmQKDDAu+dZDtZVPS1r3+FaT7mviuib/lVciHIhbbILHwN66ZvlcuSJlNPJh6h7aMgN19KA80oAAkUgMrkUsHKUSTXQ0jPsfLIsCelTYqVIQ5G+1vuqLFTY7RX6rSV7l4/VJChdezxpD3NJeewIJGQlnK6HYLi/xq/wBdT+2Ivkfcc2XG0ECehjsLSf1sO4nurTTTDPbbIcLyE+PNsjcrvI262s/5T4fGunWodOe3vdknJe28c4WL+8y7bBE7EQrIBZ5pr32LprYFr9KvHyx31x/wXx4WiE82XsyeQyUtPmsojYLf/LxbWEUQA6D5u2qxy57s9ix3O2RYi1rBJPzbR3mquycOevq9g/tPqFyh27VyjFlKtv8A3Yxf8VNc3Z5dnTeFJJswPcaxau4/SzJVkyhA7EiyPI5WO9tC7Gy7QdTVd/3NOueefxHnK97V9oewuJM0vLZkObyk0z5Ms+S0ckbyN8zqqM4sOgDdBXhfZ+329l4mF4t/6SOZ7kx8fJkTkYosniZV2YM+GjeVgbrE0e3y7hru/GuX9ds+cniqN7sg9sTxpyGKMhIwb5SHGkj2NoBqV27TXT03fxTwr+Fm8FnYDYA5RY1kLCSU29TcRcogB110Ynp41ptrtOcLyog9uRzR5/7dC0uG15B8zNGerN26V1ftxjI9lUz+NVHLILX106V067tddka8RQ61pleXmy/Snk3jIw/toyA2ta/UeFGQLfsph7egykc7L1F6VglSOFOkmqnUdQetZ7Q8prHmGi99RTJ83yn7TGGPCbZeQvlb+hOhPxPQVWmueStVYEKNjXHhW8SDRlbWNwe2ngFYbKQSbW7TValWgfTX3Bmx+5uOxopmaDMmEE6qSRtYHduH2da037Jrrdr4iNvFbfm8jxeKpxpMzHQwHzRvewQa2LAHbbvp6dmt5ny5f134PUZsqCPJXJ/cQuoJ9NkZAT2MULNT4FmPLDvr3hRw+4uOyE3Xnwysoa9w0Uht1/uvWfa36Pllr9tYN2q8/wDXPls1z+24+JlFik3JSPnOCNQTGxSDTs8lcOn0pPNZTpQc31i+osl/R5RcNCLFMPHgx1te/wAqIK31+n1/hf64fcd7y+tXOMpxOYzpUbyfuG9NIgOv+YyWt8K11+j1/wDyXpr+EpyXF/UucRwpzx5fM2+vkRMBCkK9FYy2XczMLKOp61V+npPEL11/CJV+OkMae8uOyOMzSv8ApOcgCRqzg2HquAY2tr84+Jrn7enfT/Pj8F6X4H4fmIOI5uVcmdRhOoQ8nGh2FXGglUFtgbpe5F6w30u2v8/hnhG8vBC08qwsrJ8yMliLHpar0zjkpwruTjXuCPsreVrNjEIwbb29hq8tMl41Fu891JIphU6r5D+FLIyIYuxl+0U8nkm8DfMn3U5RKQBH2jrVKHileKQOpsw6UULPwbxZZKx7lKsAQxvoe49orPbU5UFzGUuVymTKv+WG2Rf4E8o/hVwjdWBXa+qjUN23rSApGwI2oLnxNr1UpFFSXS0a94vrVyFlZ/ZU78R7gg5prH0XBO3QAP5W07tpNcv25nS6z5Zdm3w036q+1G5bhZeQ4hmGZh3ldIiR62Pa7LodbLrXmfR+xdb6beL/AOVHXvi4ZVw3u/kPbuRBJwue8wjRWMxUojk6tGY31aNflG7r2Wr2ZXRYs/1P9zY/u/2pwnPwp6c+PkS4edF19OR4w+2/9J23Xwq9pPXKNf8AWGXNctasGpe2vmNhVa4Orl7QxvZkbQzcnlxz50p8mNKjrDEb6bmZQrN8TaujXCNmny7vR1uYdo2CK1tv938tvhVh7xUs36xhiPqmQNMCV8p2/prqf6Oh+NTTKZr4zx5AykMWMB/qmYocck/1CQ7Nw8NammyXmoeMj5ieX23kRT8e6EzQRq6wKAPOAWGzafAle+uftmv/AGjbCCxzmBAYAxgPyjsHwrK4TcFbyk2lBDdp/tqeEmWQE3DadewVUXBowpPW38fsoFGbrp08aAK26+nSgQUbbj8aATf9tuIk237x1/Cnyrkky4m62427xfpVcnyc8Z+8TkF/YXllCvYfKChGt726UxEdbXUnrqT30GOeov0pgumzv076uFT3FXEZf9S0iSh/0+hjMdumg3bt3fpalvnHDPfPwsqpG2FLaRYwIib2LXFumnfXNf5cm1ufDVeAfkv/ABeMzRvuMERdWIuH2C4ufCvJ3k9l7eWPe/ovbI5Z5uEnUuzsubixqfSWQAeeJgNlmOjBSdele5pb6z2/06tc45E4eGT/APGctPPPH/4pc/GWXEZT6rZHpt6bI1to8hbS/wDKr5xRteYh5P8AwTfJ6kb/AJdL69nQms+Tj//Z
DEPARTMENT OF ECONOMICS - TRIPOLI
Ε-mail: krgriva (at) uop (dot) gr
Short CV
Krina Griva is an Assistant Professor at the Dept. of Economics at the University of the Peloponnese. Her current research interests include network effects, competition policy, consumer theory and digital economics and she has also worked in a variety of areas including nonlinear pricing and health economics. Her scientific contribution includes publications in highly cited journals and conferences. She has participated in European projects. She has a Ph.D. from the Athens University of Economics and Business and an M.Sc. from UMIST. She has been an Assistant Professor at the University of Ioannina.
Scientific Interest: Industrial organization, network effects, consumer theory, digital economics.